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This lecture will discuss another data structure on streams. As mentioned
in the previous lecture, in this context, an infinite number of data items
arrive continuously, whereas the memory capacity is bounded by a small
size. Every item can be seen only once. The goal is to use such a small
memory to answer interesting queries with strong precision guarantees.

CMSC 5705 Lecture 8: Count-min Sketch



Point query
Range query

Problem definitions

Given an integer x , we denote by [x ] the set of integers in [1, x ]. In this
lecture, we assume a key domain of [U], where U is an integer.

Definition (Stream)

A stream is an infinite sequence of operations, each of which has the
form (k , v), where k is in the domain [U], and v is in the real domain R.

Definition (State vector)

A state vector A is defined as [A[1], ...,A[U]], where A[i ] (1 ≤ i ≤ U)
equals the sum of the v -values of all the past updates (k , v) where k = i .

We will assume that all values of A are non-negative at all times, i.e.,
A[i ] ≥ 0 for all i .
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Problem definitions (cont.)

Problem (Point query)

Given a key k ∈ [U], a point query returns an estimated value of A[k ].

Problem (Range query)

Given keys k1, k2 ∈ [U] with k1 ≤ k2, a range query returns an estimated
value of

∑
k1≤k≤k2

A[k ].

Clearly, by using Ω(U) space, we can easily answer both queries exactly.
U , however, may be a huge value such that Ω(U) space may not be
affordable in practice. Our goal is to use space significantly less than
O(U) and yet still be able to process queries accurately (i.e., minimizing
their errors).
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Hash function

The count-min sketch we introduce shortly deploys hash functions. For
our discussion, we focus on hash functions f : [n] → [m]. That is, given a
value x ∈ [n], f (x) falls in the domain [m]. The function has the property
that, given any x1, x2 ∈ [n] with x1 6= x2, the probability for f (x1) = f (x2)
equals 1/m.

Note

Many simple functions satisfy the above property very well in practice.
One example is f (x) = 1 + (αx + β) mod m, where α (β) is randomly
selected from [p] with p being a very large prime number.
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Count-min sketch

The structure consists of

a d × w array CM [i , j ], i.e., 1 ≤ i ≤ d and 1 ≤ j ≤ w . The value of
d (w) is called the depth (width) of the array.

d independent hash functions h1, ..., hd from [H ] to [w ], where H is
an integer, and called the hash domain.

Space consumption O(dw).
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Update

Build a count-min sketch with H = U . Given an operation (k , v), update
the sketch by adding v to CM [i , hi(j)] for each i ∈ [d ].

Time = O(d).
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Answering a point query

Given the query key k ∈ [U], return:

min
1≤i≤d

CM [i , hi(k)].

Query time = O(d).
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Theoretical guarantee

Theorem

Let γ̂ be the answer returned by the count-min sketch for a point query
whose exact answer is γ. Choosing w = ⌈e/ǫ⌉ and d = ⌈ln(1/δ)⌉, we
have: Then:

γ̂ − ǫ‖A‖1 ≤ γ ≤ γ̂.

The first inequality holds with probability at least 1/δ, and the second
inequality holds with certainty.

We will prove the theorem in the next few slides.
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Proof

Our proof requires the Markov inequality:

Markov inequality

Let X be a random variable. It holds that:

Pr(|X | ≥ c) ≤
E (|X |)

c

where c is any positive constant.
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Proof (cont.)

If we report directly CM [1, h1(k)] as the answer, the expectation of the
maximum error (i.e., with respect to γ) is

‖A‖1/w ≤ ǫ‖A‖1/e

(i.e., on average, 1/w of all the updates contributed to CM [1, h1(k)]).
By Markov inequality, the error is larger than ǫ‖A‖1 with probability at
most 1/e.
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Proof (cont.)

The same reasoning applies to the CM [i , h1(k)] of every i .

Hence, γ̂ = min1≤i≤d CM [i , hi(k)] has an error greater than ǫ‖A‖1 if and
only if the CM [i , h1(k)] of all i have an error exceeding ǫ‖A‖1. The
independence of h1, ..., hd indicates that this can happen with probability
at most

(1/e)d ≤ δ.

�
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Now we switch our attention to range queries. A naive way to answer
such a query with search interval [k1, k2] is to issue k2 − k1 + 1 point
queries, and combine their results. This approach, however, is not likely
to be accurate. More space is needed to boost the precision.
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Without loss of generality, assume U is a power of 2. Partition the
domain [U] into log2 U sets of intervals:

S1: evenly partition U into intervals of length 1.

S2: evenly partition U into intervals of length 2.

S3: evenly partition U into intervals of length 4.

...

Slog2 U : evenly partition U into intervals of length 2(log2 U)−1 = U/2.

Each interval (in any of these sets) is called a dyadic interval.
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An observation

Any range [k1, k2] in [U] can be broken into at most 2 logU dyadic
intervals. The following figure shows an example where [4, 15] is broken
into 5 dyadic ranges shown in red.

4 15

Each set of dyadic intervals can be regarded as a coarse version of the
domain [U].
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Structure for range queries

For Si (1 ≤ i ≤ log2U), maintain a count-min sketch CMi with

H = U/2i−1 (i.e., the number of intervals in the set)

w = ⌈2e logU/ǫ⌉

d = ⌈1/δ⌉.

Space = O( log
2U
ǫ

log 1
δ
).
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Update

Given an operation (k , v), update CMi (1 ≤ i ≤ log2U) in the same way
as in point queries by converting the operation to (⌈k/2i−1⌉, v). Namely,
for each 1 ≤ j ≤ d , add v to CMi [j , hj(k

′)], where k ′ = ⌈k/2i−1⌉.
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Answering a range query

Recall that a query range can be partitioned into at most 2 logU dyadic
ranges, two in each Si (1 ≤ i ≤ log2 U). Perform at most 2 point queries
in each CMi , corresponding to the dyadic intervals in Si

4 15

Sum up the answers of all point queries.
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Theoretical guarantee

Theorem

Let γ̂ be the answer returned by the count-min sketch for a range query
whose exact answer is γ. Then:

γ̂ − ǫ‖A‖1 ≤ γ ≤ γ̂.

The first inequality holds with probability at least 1/δ, and the second
inequality holds with certainty.
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Proof

The key observation is that, if we had set d = 1, then the estimate we
get would have an expected maximum error of ǫ‖A‖/e. The rest of the
proof proceeds in the same way as that of the theorem for point queries.
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Playback of this lecture

Count-min sketch.

Space O( 1
ǫ
· ln 1

δ
) for point queries (each error bounded by ǫ‖A‖1

with probability at least 1− δ).

Space O( log
2 U
ǫ

· ln 1
δ
) for range queries (each error bounded by

ǫ‖A‖1 with probability at least 1− δ).
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