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In this lecture, we will discuss a classic sampling algorithm called
reservoir sampling. This algorithm takes a random sample set of the
desired size in only one pass over the underlying dataset. This feature
makes the algorithm ideal for stream environments where every item can
be processed only once.
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Problem (Random sampling)

Given a set S of items, compute a random sample set of size k .
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Reservoir

algorithm reservoir(k , S)
/* take k random samples from the dataset S */

1. initialize an array samples of size k

2. for i = 1 to n = |S |
3. o = the i-th item
4. if i ≤ k then

5. samples[i ] = o

6. else

7. generate a random integer from 1 to x

8. if x ≤ k then

9. samples[i ] = o
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Example

Let S = {59, 100, 2, 30, 63, ...}, and k = 3.

The first k items are directly added to the sample set. So
samples = (59, 100, 2).

Given the 4th item, the algorithm generates a random integer x
from 1 to 4. Assume that the generated x = 4. As x > k , the item
is ignored.

Given the 5th item, again, the algorithm generates x randomly, but
now from 1 to 5. Assume that x = 2 this time. Hence, the item is
added to samples, and replaces the 2nd value there. Hence,
samples becomes (59, 63, 2).

The remaining items are processed in the same manner.
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The reservoir algorithm is very efficient: it spends O(1) time per item.
Next, we will show that the algorithm is correct, namely:

1 (equal likelihood) Every item of S has the same probability of being
sampled.

2 (independence) For any two items o1, o2, the events they are
sampled are independent from each other.

The second statement is obvious – the decision we made to sample an
incoming item is not based on the results of sampling the preceding
items. Next, we focus on proving the first statement.
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Proof of correctness

Theorem

After n ≥ k items in S have been processed, each of those items is
sampled with probability s/n.

Proof

We prove the theorem by induction. Basic step: for n = k the statement
is obviously correct. Inductive step: assuming the correctness for n = m,
next we show that the statement is also correct for n = m + 1.
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Proof of correctness (cont.)

Proof (cont.)

Our discussion distinguishes the (m + 1)-th object o and any of the first
m objects o′:

o is sampled if and only if the random number x generated for o
falls in the range from 1 to s. Hence, o is sampled with probability
s/(m + 1).

o′ is sampled (after processing o) if and only if (i) it was sampled
after processing the first m items, and (ii) the random number x
generated for o is not equivalent to the index value of o in the array
samples.

By our inductive assumption, (i) happens with probability s/m. (ii)
occurs with probability m/(m + 1). As the two events are
independent, the probability that they happen simultaneously equals
s

m
· m

m+1
= s

m+1
.
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Playback of this lecture

Reservoir algorithm.

O(1) time per item.

One pass.
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