Lecture Notes: Weight-Balanced B-tree

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will study a technique called weight-balancing, which is very important in designing data structures, as we will see in later lectures. We will introduce the technique on the B-tree, which can be regarded as the EM equivalent of the binary search tree in RAM.

1 B-tree

Structure. Let S be a set of N elements in \mathbb{R}. A B-tree T on S is parameterized by two integer values: a leaf parameter $b \geq B$ and a branching parameter $p \geq 16$. We assume that both b and p are multiples of 16. Given a node u of T, we denote by $sub(u)$ the subtree of u. All the leaves of T are at the same level, namely, the length of each root-to-leaf path is the same. Each leaf node, if it is not the root, contains between $b/4$ and b elements in S—referred to as leaf elements. Each element of S is stored in one, and exactly one, leaf.

Consider now an internal node v with child nodes u_1, u_2, \ldots, u_f. We refer to the value of f as the fanout of v. If v is not the root, the value of f must satisfy $p/4 \leq f \leq p$; otherwise, it must hold that $f \geq 2$. For each u_i ($1 \leq i \leq f$), v stores a routing element e_i, which equals the smallest leaf element in $sub(u_i)$. Without loss of generality, suppose that e_1, e_2, \ldots, e_f are in ascending order. For each $i \in [1, f - 1]$, it must hold that all the leaf elements in $sub(u_i)$ be smaller than e_{i+1}.

T has $O(N/b)$ nodes in total, and therefore, occupies $O(N/b)$ space. We say that the leaves of T are at level 0, and inductively, the parent of a level-i node in T is at level $i + 1$ ($i \geq 0$). The total number of levels is $O(\log_p(N/b))$.

We usually set $b = B$ and $p = B^c$ for some constant $c \in (0, 1]$. This ensures that the B-tree consumes $O(N/B)$ space, and has $O(\log_B N)$ levels. Such a B-tree can be harnessed to answer a large variety of queries efficiently. The following are two examples:

- **Predecessor search.** Given a value $q \in R$, a predecessor query returns the predecessor of q in S, namely, the largest element in S that is at most q. The predecessor can be found in $O(\log_B N)$ I/Os.

- **Range reporting.** Given an interval $I = [x, y]$, a range query reports all the elements in $S \cap I$. We can answer such a query in $O(\log_B N + K/B)$ I/Os, where $K = |S \cap I|$.

We leave to you to figure out the query algorithms.

Re-balancing Operations. The B-tree supports both insertions and deletions. Before we clarify the update algorithms, let us first elaborate on two re-balancing operations: split and merge.

Given a leaf/internal node u, we denote by $|u|$ the number of leaf/routing elements in u. We say that a leaf (or internal) u overflows if $|u| > b$ (or $|u| > p$, resp.). We will adhere to the constraint that an overflowing leaf (or internal) node u should always satisfy $|u| \leq 5b/4$ (or $|u| \leq 5p/4$, resp.). Denote by parent(u) the parent of u. A split of u is performed as follows:

- Create a new node u'. Move the $\lceil |u|/2 \rceil$ largest elements in u over to u' (note that if a routing element e is moved to u', then the child node of u that e corresponds to now becomes a child
node of u'). Make u' a new child at $\text{parent}(u)$ (this means that a routing element is added to $\text{parent}(u)$ for u'). If $\text{parent}(u)$ does not exist, create a new root with child nodes u and u'.

Let u be a non-root node. If u is a leaf (or internal) node, we say that u underflows if $|u| = b/4 - 1$ (or $|u| = p/4 - 1$, resp.). Let u' be a neighboring sibling of u, namely, no routing element in $\text{parent}(u)$ is in between the two routing elements (in $\text{parent}(u)$) corresponding to u and u', respectively. Assuming that u' neither overflows nor underflows, a merge of u, u' is performed as follows:

- Move all the elements in u' into u (if u' is an internal node, this means that all the child nodes of u' are now child nodes of u). Remove u' from the tree, which reduces the fanout of $\text{parent}(u)$ by 1. If $\text{parent}(u)$ is the root and has only one child left (which must be u), make u the new root. If u is a leaf node and $|u| \geq 3b/4$, split u; similarly, if u is an internal node and $|u| \geq 3p/4$, split u.

We refer to splits and merges collectively as rebalancing operations. Each such operation can be carried out in $O((b + p)/B)$ I/Os at the leaf level, or $O([p/B])$ I/Os at the internal level.

Update. To insert an element e, descend a root-to-leaf path to the leaf node z that should accommodate e, and add e to z. The insertion finishes if z does not overflow. Otherwise, split z. The split may leave $\text{parent}(z)$ overflowing; in this case, split $\text{parent}(z)$, and handle the potential overflow in the parent of $\text{parent}(z)$ in the same way.

To delete an element e, first descend a root-to-leaf path to the leaf node z where e resides, and then remove e from z. The deletion finishes if either z is the root, or z does not underflow. Otherwise, merge z with a neighboring sibling (if z has two neighboring siblings, the choice is arbitrary). We are done if either $\text{parent}(z)$ is the root, or $\text{parent}(z)$ does not underflow. Otherwise, merge $\text{parent}(z)$ with a neighboring sibling, and handles the parent of $\text{parent}(z)$ in the same way.

It is clear from the above discussion that, each insertion/deletion takes at most $O((b/B) + \lceil p/B \rceil \cdot \log_p(N/b))$ I/Os.

Remarks. Here are two interesting questions for you to think about:

- If we perform any mixture of N insertions and deletions, how many rebalancing operations can be triggered? The answer is $O(N/b)$, why?

- Consider a B-tree with $b = f = B$. Suppose that u and u' are two nodes at level-ℓ. What is the largest ratio between the numbers of leaf elements in their subtrees? For example, if $\ell = 1$, the answer is 4.

2 Weight-Balanced B-tree

Structure. Once again, let S be a set of N elements in \mathbb{R}. A weight-balanced B-tree [1] T on S is also parameterized by a leaf parameter $b \geq B$ and a branching parameter $p \geq 16$. We assume that b and p are multiples of 16. All the leaves of T are at the same level. Each leaf node, if not the root, contains between $b/4$ and b elements in S—referred to as leaf elements. Each element of S is stored in one, and exactly one, leaf.

Define the weight of u—denoted as $w(u)$—to be the number of leaf elements stored in $\text{sub}(u)$ (i.e., the subtree of u). We say that the leaves of T are at level 0, and inductively, the parent of a level-i node in T is at level $i + 1$ ($i \geq 0$). Let v be an internal node with child nodes $u_1, ..., u_f$. For each child node u_i ($1 \leq i \leq f$), v stores (i) a routing element e_i, which equals the smallest leaf element in $\text{sub}(u_i)$, and (ii) the value of $w(u_i)$. Without loss of generality, suppose that $e_1, e_2, ..., e_f$
are in ascending order. For each \(i \in [1, f - 1] \), it must hold that all the leaf elements in \(\text{sub}(u_i) \) be smaller than \(e_{i+1} \).

The following weight-balancing constraint must hold for every non-root node \(u \) in \(T \):

\[
\text{If } u \text{ is at level } \ell, \text{ then its weight is between } p^\ell b / 4 \text{ and } p^\ell b.
\]

We complete the definition of \(T \) by requiring the root to have at least 2 child nodes.

You may be wondering: why haven’t we imposed any constraints on the fanout of an internal node? In fact, we have done so implicitly via the weight-balancing constraint:

Lemma 1. Each internal node has fanout between \(p/4 \) and \(4p \).

Proof. Consider an internal node \(v \) at level \(\ell \) with child nodes \(u_1, \ldots, u_f \). Clearly, \(w(v) = \sum_{i=1}^{f} w(u_i) \).

The lemma follows from the fact that \(w(v) \in [p^\ell b / 4, p^\ell b] \) whereas \(w(u_i) \in [p^{\ell-1} b / 4, p^{\ell-1} b] \) for each \(i \in [1, f] \). \(\square \)

As a result, \(T \) has consumes \(O(N/b) \) space, and has height \(O(\log_p(N/b)) \). By setting \(b = B^c \) for some constant \(c \in (0, 1] \), \(T \) answers predecessor and range queries with the same cost as a B-tree with the same \(b \) and \(p \).

Remark. Let \(u, u' \) be two level-\(\ell \) nodes of \(T \). The weight-balancing constraint says that \(w(u) \) and \(w(u') \) differ by a factor of at most 4. In other words, the subtrees of \(u, u' \) contain roughly the same number of leaf elements. This is why \(T \) is said to be “weight-balanced”.

Rebalancing Operations. We now re-design the split and merge operations for the weight-balanced B-tree. Given a non-root node \(u \) at level \(\ell \), we say that \(u \) overflows if \(w(u) > p^\ell b \), or underflows if \(w(u) = \frac{1}{3} p^\ell b - 1 \). Given a level-\(\ell \) overflowing node \(u \) with \(w(u) \in [\frac{2}{5} p^\ell b, \frac{5}{3} p^\ell b] \), a split operation is performed as follows:

- **Case 1:** \(u \) is a leaf node. Create a new node \(u' \), and move half of the elements in \(u \) to \(u' \). Update parent(\(u \)) accordingly if \(u \) is not the root; otherwise, create a new root with child nodes \(u, u' \). Note that the weights of \(u \) and \(u' \) are both in \([\frac{7}{10} b, \frac{8}{5} b]\).

- **Case 2:** \(u \) is an internal node. Suppose that \(u \) has child nodes \(u_1, \ldots, u_f \). We find the maximum \(s \) satisfying

\[
\sum_{i=1}^{s} w(u_i) \leq \sum_{i=s+1}^{f} w(u_i).
\]

Create a nodes \(u' \) and \(u'' \). Detach \(u \) from parent(\(u \)), and \(u_1, \ldots, u_f \) from \(u \). Make \(u_1, \ldots, u_s \) child nodes of \(u' \), and \(u_{s+1}, \ldots, u_f \) child nodes of \(u'' \). Make \(u', u'' \) child nodes of parent(\(u \)) if parent(\(u \)) exists; otherwise, create a new node with \(u', u'' \) as the child nodes.

Next we analyze \(w(u') \) and \(w(u'') \). Clearly, \(w(u') = \sum_{i=1}^{s} w(u_i) \) and \(w(u'') = \sum_{i=s+1}^{f} w(u_i) \).

Note that \(w(u') \) and \(w(u'') \) can differ by at most \(2p^{\ell-1} b \) (otherwise, \(s \) could have increased by 1 without violating (1)). Therefore:

\[
w(u') \in \left[\frac{w(u)}{2} - p^{\ell-1} b, \frac{w(u)}{2} \right]
\]

\[
w(u'') \in \left[\frac{w(u)}{2}, \frac{w(u)}{2} + p^{\ell-1} b \right]
\]
With the fact that \(w(u) \in \left[\frac{7}{8}p^\ell b, \frac{5}{4}p^\ell b \right] \) and that \(p \geq 16 \), it is easy to obtain:

\[
 w(u') \in \left[\frac{6}{16}p^\ell b, \frac{5}{8}p^\ell b \right] \\
 w(u'') \in \left[\frac{7}{16}p^\ell b, \frac{11}{16}p^\ell b \right]
\]

Next, we clarify merge. Given a level-\(\ell \) underflowing node \(u \), and an immediate sibling \(u' \) of \(u \) such that \(w(u') \in \left[\frac{1}{4}p^\ell b, p^\ell b \right] \), this operation is performed as follows:

- **Merge.** Create a node \(\bar{u} \). Detach all the child nodes of \(u, u' \) from their parents, and make all of them child nodes of \(\bar{u} \). Detach \(u, u' \) from parent \((u) \), and make \(\bar{u} \) a child of parent \((u) \). If parent \((u) \) is the root and has only one child left, make \(\bar{u} \) the new root. Note that at this moment \(w(\bar{u}) \) can be as large as \(\frac{5}{4}p^\ell b - 1 \). The merge finishes if \(w(\bar{u}) \leq \frac{7}{8}p^\ell b \); otherwise, split \(\bar{u} \).

Update. The description of the update algorithms in Section 1 applies verbatim here. Each update takes \(O((b/B) + \lceil p/B \rceil \cdot \log_p(N/b)) \) I/Os.

A Crucial Property of Weight Balancing. As we have seen, the WBB-tree has exactly the same space, update, and even query complexities (for predecessor and range queries) as the B-tree. So what have we gained? The answer is the following important lemma:

Lemma 2. Let \(u \) be a node of a WBB-tree that is created by a split or a merge. Node \(u \) will not underflow or overflow unless \(\Omega(w(u)) \) leaf elements have been inserted or deleted in \(sub(u) \).

Proof. It follows from the above discussion that \(w(u) \in \left[\frac{6}{16}p^\ell b, \frac{5}{8}p^\ell b \right] \). Hence, at least \(\frac{5}{16}p^\ell b \) leaf elements must be deleted in \(sub(u) \) for \(u \) to underflow, and at least \(\frac{5}{16}p^\ell b \) leaf elements must be inserted in \(sub(u) \) for \(u \) to overflow. \(\square \)

The above property plays a crucial role in designing many data structures; we will see some examples in later lectures.

Remark. You may be wondering whether the B-tree in Section 1 also guarantees such a property. The answer is, as you could have guessed, no. Consider, for example, a B-tree of \(b = p = B \). Suppose that a level-\(\ell \) node \(u \) in the tree has just been produced by a split. Then, in the worst case, \(u \) will be split again after around \((B/2)^{\ell+1} \) insertions. On the other hand, a WBB-tree with \(b = p = B \) can control this number to be \(\Theta(B^{\ell+1}) \).

References