In this lecture, we will continue our discussion on the range searching problem. Recall that the input set \(P \) consists of \(N \) points in \(\mathbb{R}^2 \). Given an axis-parallel rectangle \(q \), a range query reports all the points of \(P \cap q \). We want to maintain a fully dynamic structure on \(P \) to answer range queries efficiently.

We will focus on non-replicating structures [2, 3]. Specifically, consider that each point in \(P \) has an information field (e.g., the menu of a restaurant) of \(L \) words, where \(L = o(B) \). Given a query, an algorithm must report the information fields of all the points that fall in the query window. A non-replicating structure is allowed to use \(O(N/B) + NL/B \) space. Note that the term \(NL/B \) is outside the big-\(O \). In other words, the structure can store each information field exactly once, and on top of that, consume \(O(N/B) \) extra space. The external range tree we discussed previous is not non-replicating (think: why?).

It is known [3] that the best query time of a non-replicating structure is \(O(\sqrt{NL/B} + KL/B) \) I/Os. We will introduce two structures that are able to guarantee this cost. The first one, called the kd-tree [1], is very simple but unfortunately is difficult to update. Then, we will see how to utilize the kd-tree to design another structure called the O-tree [2], which retains the same query performance as the kd-tree, and supports an update in \(O(\log_B N) \) I/Os amortized.

For convenience, we will assume \(L = O(1) \), namely, each information field requires constant words to store. Extensions to general \(L = o(B) \) are straightforward.

1 Kd-Tree

Structure. The kd-tree is a binary tree \(T \). Let \(splitdim \) be a variable whose value equals either the x- or y-axis. \(T \) is built by a function \(\text{build}(P, splitdim) \) which returns the root of \(T \). If \(P \) has at most \(B \) points, the function returns a single node containing all those points. Otherwise, it finds a line \(\ell \) perpendicular to axis \(splitdim \) that divides \(P \) into \(P_1 \) and \(P_2 \) of equal size. This can be done in \(O(|P|/B) \) I/Os using a “k-selection” algorithm. The function then creates a node \(r \) storing \(\ell \) (which is called the split line of \(r \)), and sets the left and right children of \(r \) to the nodes returned by recursively invoking \(\text{build}(P_1, alterdim) \) and \(\text{build}(P_2, alterdim) \), respectively, where \(alterdim \) equals the x-axis if \(splitdim \) is the y-axis, and vice versa. The function terminates by returning \(r \).

Figure 1 shows an example assuming \(B = 1 \). It is easy to see that every leaf node has at least \(B/2 \) points (think: why?). Hence, \(T \) has \(O(\log(N/B)) \) levels and can be constructed in \(O((N/B) \log(N/B)) \) I/Os.

Query. Observe that each node \(u \) of \(T \) corresponds to a bounding rectangle \(\text{rec}(u) \) which is the intersection of all the half-planes implied by the root-to-\(u \) path. For example, in Figure 1, the rectangle of node \(\ell_3 \) is the half-plane on the right of \(\ell_1 \), whereas that of node \(h \) is bounded by \(\ell_1, \ell_3, \ell_6 \) and the x-axis. Given a range query with search region \(q \), we simply access all the nodes \(u \) such that \(\text{rec}(u) \) intersects \(q \), and report the points covered by \(q \) stored in the leaf nodes visited.
Analysis. We will show that the query cost is $O(\sqrt{N/B} + K/B)$. Clearly, the nodes accessed can be divided into two categories: nodes whose bounding rectangles:

1. intersect at least one edge of q;

2. are enclosed by q.

For a node of Category 2, its entire subtree must be visited, with all of its leaf nodes having to be reported. Hence, the number of nodes of this category is $O(K/B)$. Next, we focus on the nodes of Category 1.

We prove actually a stronger result:

Lemma 1. The number of nodes whose bounding rectangles intersect any vertical (or horizontal) line ℓ is at most $O(\sqrt{N/B})$.

Proof. Let $f(N)$ be the maximum number of nodes whose bounding rectangles intersect ℓ among all the kd-trees with N nodes. Let u_1 be the root of any such kd-tree. Assume without loss of generality that the split line of u_1 is perpendicular to the x-axis. Again, without loss of generality, assume that ℓ is on the right of the split line ℓ_1 of u_1. Let the right child of u_1 be u_3 having split line ℓ_3. Let the left and right children of u_3 be u_4 and u_5, respectively. See Figure 2.

Clearly, ℓ intersects $\text{rec}(u_1)$ and $\text{rec}(u_3)$, and does not intersect the bounding rectangle of any node in the left subtree of u_1. The subtree of u_4 (u_5) is a kd-tree with $N/4$ nodes with the split line
of the root being perpendicular to the x-axis. Hence, the number of nodes in that kd-tree whose bounding rectangles intersect ℓ is at most \(f(N/4) \). It follows that

\[
 f(N) = 2 + 2f(N/4)
\]

with \(f(N) = 1 \) if \(N \leq B \). Solving the recurrence gives \(f(N) = O(\sqrt{N/B}) \).

We thus conclude that there are \(4 \cdot O(\sqrt{N/B}) = O(\sqrt{N/B}) \) nodes of Category 1.

Theorem 1. A kd-tree on a set of \(N \) points in \(\mathbb{R}^2 \) occupies \(O(N/B) \) space, answers a range query in \(O(\sqrt{N/B} + K/B) \) I/Os, and can be constructed in \(O(\frac{N}{B \log^2 B} \) I/Os.

The following follows immediately:

Corollary 1. For some integer \(N \), the kd-tree on a dataset of size \(O(B \log^2 N) \) consumes \(O(\log^2 N) \) space, answers a query in \(O(\log_B N + K/B) \) I/Os, and can be updated in \(O(\log^2 N \cdot \log_B N) \) I/Os per insertion and deletion, by re-constructing the tree from scratch after every update.

2 O-Tree

Next, we will leverage Corollary 1 to design the next structure O-tree. We will learn a technique called bootstrapping, which utilizes an inefficient structure (such as the kd-tree) to build an efficient structure.

2.1 Structure

Let \(N_0 \) be an integer that equals \(\Theta(N) \), where \(N \) is the number of points in the underlying dataset \(P \). The O-tree takes \(N_0 \) as a parameter. You may wonder at this point what happens if \(N \) has grown (or shrunk) sufficiently such that \(N_0 = \Theta(N) \) no longer holds. We will see that this can be dealt with using global rebuilding. Until then, we will assume that \(N_0 = \Theta(N) \) always holds.

Let \(V \) be a set of \(s \) vertical slabs that partition \(P \) into \(P_1, ..., P_s \) of roughly the same size. Specifically, we will make sure each \(P_i \) (\(1 \leq i \leq s \)) has between \(\frac{1}{4} \sqrt{N_0 B} \cdot \log_B N_0 \) and \(\sqrt{N_0 B} \cdot \log_B N_0 \) points. In other words, \(s = \Theta(\sqrt{N_0} \sqrt{\frac{N_0}{B \log_B N_0}}) \). We use a B-tree \(V \) to index the (total order of the) slabs in \(V \). Number those slabs as \(1, ..., s \) from left to right.

Next let us focus on one particular \(P_i \). We use a set \(H_i \) of \(h_i \) horizontal slabs to partition it into \(P_i[1], ..., P_i[h_i] \) of roughly the same size. Specifically, each \(P_i[j] \) (\(1 \leq j \leq h_i \)) has between \(\frac{1}{4} B \log_B^2 N_0 \) and \(B \log_B^2 N_0 \) points, namely, \(h_i = \Theta(\sqrt{N_0} \sqrt{\frac{N_0}{B \log_B N_0}}) \). The slabs in \(H_i \) are indexed by a B-tree \(H_i \). Number them as \(1, ..., h_i \) from bottom to top.

We refer to each set \(P_i[j] \) of points as a cell, and manage them with a kd-tree of Corollary 1. Note that each cell is naturally associated with a rectangle, which is the intersection of the \(i \)-th cell of \(V \) and the \(h_i \)-th cell of \(H_i \).

This completes the description of the O-tree. Since the information field of each point is stored in only one kd-tree, the O-tree is non-replicating. As for the space consumption, all the kd-trees occupy \(O(N/B) \) space in total. \(V, H_1, ..., H_s \) together use \(O(\frac{N_0}{B^2 \log_B N_0}) = o(N/B) \) space. The total space is therefore linear.
2.2 Query

Given a range query with search region \(q = [x_1, x_2] \times [y_1, y_2] \), we first identify \(\alpha_1 \) (\(\alpha_2 \)) such that \(x_1 \) (\(x_2 \)) is covered by the \(\alpha_1 \)-th (\(\alpha_2 \)-th) slab of \(V \). Then, for each \(i \in [\alpha_1, \alpha_2] \), identify \(\beta_i[1] \) (\(\beta_i[2] \)) such that \(y_1 \) (\(y_2 \)) is covered by the \(y_1 \)-th (\(y_2 \)-th) slab of \(H_i \). We then simply search the kd-trees of all \(P_i[j] \) where \(\alpha_1 \leq i \leq \alpha_2 \) and \(\beta_i[1] \leq j \leq \beta_i[2] \).

Using the relevant B-trees, \(\alpha_1, \alpha_2 \), and the \(\beta_i[1], \beta_i[2] \) of all \(i \) can be found in \(O(s \log_B N) = O(\log_B N \cdot \sqrt{N}) = O(N/B) \) I/Os. Regarding the cost on kd-trees, first notice that all the points in cell \(P_i[j] \) where \(\alpha_1 < i < \alpha_2 \) and \(\beta_i[1] < j < \beta_i[2] \) must be covered by \(q \). Therefore, the time of accessing the kd-trees on those cells is \(O(K/B) \). The rest of the query cost comes from the kd-trees on the “boundary cells” whose rectangles intersect an edge of \(q \). Clearly, there can be at most \(O(N/B) \) such kd-trees. By Corollary 1, querying each of them takes \(O(\log_B N) \) cost (plus the linear output cost). Thus, the overall query overhead is \(O(\sqrt{N/B} + K/B) \).

2.3 Update

Insertion. To insert a point \(p \), we first identify the cell \(P_i[j] \) whose rectangle covers it in \(O(\log_B N) \) I/Os. Then, we insert \(p \) in the kd-tree of that cell in \(O(\log_B N) \) I/Os.

If \(P_i[j] \) has more than \(\gamma_{cell} = B \log_B^2 N_0 \) points, a cell overflow occurs. In this case, we split the cell by a horizontal line into two cells of the same size, and rebuild their kd-trees in \(O(\gamma_{cell} \cdot \log_B \log_B N) \) I/Os. Note that a new cell has at most \(1 + \gamma_{cell}/2 \) points. Accordingly, we update \(\mathcal{H}_i \) in \(O(\log_B N) \) I/Os.

If \(P_i \) (i.e., the \(i \)-th slab in \(V \)) has more than \(\gamma_{slab} = \sqrt{N_0 B} \cdot \log_B N_0 \) points, a slab overflow occurs. In this case, we split \(P_i \) into two slabs \(P_i, P_{i+1} \), and cut each of them horizontally into cells of size \(\gamma_{cell}/2 \) in \(\gamma_{slab}/B \) I/Os (think how to do so\(^1\)). Then, we rebuild the kd-trees of those cells, as well as \(\mathcal{H}_i \) and \(\mathcal{H}_{i+1} \), in \(O(\gamma_{slab} \cdot \log_B \log_B N) \) I/Os. Note that a new slab has at most \(1 + \gamma_{slab}/2 \) points. Finally, \(\mathcal{V} \) is updated in \(O(\log_B N) \) I/Os.

Deletion. To delete a point \(p \), we first remove it from the cell \(P_i[j] \) it belongs to in \(O(\log_B^3 N) \) I/Os. If \(P_i[j] \) has less than \(\gamma_{cell}/4 \) points, a cell underflow occurs, in which case we merge it with the cell above it (or below it, whichever exists). If the resulting cell contains more than \(3\gamma_{cell}/4 \) points, split it into two of equal size. In this way, we can ensure that a new cell has between \(3\gamma_{cell}/8 \) and \(3\gamma_{cell}/4 \) points. In any case, we rebuild the kd-trees of the new cells in \(O(\log_B^2 N \cdot \log_B \log_B N) \) I/Os, and modify \(\mathcal{H}_i \) in \(O(\log_B N) \) I/Os.

If \(P_i \) has less than \(\gamma_{slab}/4 \) points, a slab underflow occurs. In this case, we merge \(P_i \) with its left (or right) slab. If the resulting slab has more than \(3\gamma_{slab}/4 \) points, split it into two of equal size, to guarantee that a new slab has between \(3\gamma_{slab}/8 \) and \(3\gamma_{slab}/4 \) points. In any case, we rebuild the kd-trees of the new cells in \(O(\gamma_{slab} \cdot \log_B \log_B N) \) I/Os, and modify \(\mathcal{V} \) in \(O(\log_B N) \) I/Os.

Construction. All the cells can be easily obtained in \(O(N/B \log_B N) \) I/Os by sorting. After that, each kd-tree can be constructed in \(O(\log_B^2 N \cdot \log_B \log_B N) \) I/Os, rendering the total overhead of \(O(N/B \log_B \log_B N \) of building all kd-trees.

Cost. Clearly, if no cell/slab overflow/underflow happens, an update finishes in \(O(\log_B^3 N) \) I/Os. A cell overflow/underflow, on the other hand, demands \(O(\gamma_{cell} \cdot \log_B \log_B N) \) I/Os. However, since a new cell requires at least \(\Omega(\gamma_{slab}) \) updates to incur the next overflow/underflow, each update

\(^1\)The last cell may have less than \(\gamma_{cell}/2 \) points. If it has at least \(3\gamma_{cell}/8 \) points, we leave it there directly. Otherwise, we merge it with the cell below it to create a cell of size less than \(7\gamma_{cell}/8 \).
accounts for only $O(\log_2 \log_B N)$ I/Os for a cell overflow/underflow. A similar argument shows that an update is amortized on $O(\log_2 \log_B N)$ I/Os for the cost of remedying a slab overflow/underflow.

We conclude:

Lemma 2. As long as the assumption $N_0 = \Theta(N)$ holds, there is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an update in $O(\log_B^3 N)$ I/Os amortized. The structure can be built in $O(\frac{N}{B} \log_2 \frac{N}{B})$ I/Os.

2.4 Global Rebuilding

The assumption $N_0 = \Theta(N)$ can be removed easily. Suppose that we have rebuilt a new O-tree by setting N_0 to the size N of the current dataset. Then, we handle the next $N_0/2$ updates using the algorithms of the previous subsection, during which N can range from $N_0/2$ to $3N_0/2$, and is therefore $\Theta(N_0)$. Right after finishing with $N_0/2$ updates, however, we destroy the O-tree, and construct a fresh one by performing N insertions in $O(N \log_B^3 N)$ I/Os. By the standard analysis of global rebuilding, each update bears only $O(\log_B^3 N)$ I/Os amortized. So, now we can claim:

Lemma 3. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an update in $O(\log_B^3 N)$ I/Os amortized. The structure can be built in $O(\frac{N}{B} \log_2 \frac{N}{B})$ I/Os.

2.5 Bootstrapping

We have obtained a linear space structure with the optimal query performance which can be updated in poly-logarithmic I/Os. This is a significant improvement over the kd-tree. Remember that this is achieved by using the inferior structure of Corollary 1 to handle small datasets (of size at most $B \log_B^2 N$)—an idea known as bootstrapping.

Somewhat surprisingly, we can bootstrap again to achieve our desired logarithmic update bound, by doing (almost) nothing. Observe that Lemma 3 gives us a stronger version of Corollary 1:

Corollary 2. For some integer N, there is a non-replicating structure on a dataset of size $O(B \log_B^2 N)$ consumes $O(\log_B^3 N)$ space, answers a query in $O(\log_B^3 N + K/B)$ I/Os, and can be updated in $O(\log_B^3 \log_B N)$ I/Os amortized per insertion and deletion. The tree can be constructed in $O(\log_B^2 N \cdot \log_2 \log_B N)$ I/Os.

Now, let us implement every cell structure of the O-tree (which was a kd-tree before) as a structure of Corollary 2. Everything remains the same, except that now an update takes $O(\log_B N + \log_B^3 \log_B N) = O(\log_B N)$ I/Os if no cell/slab overflow/underflow occurs. Therefore, we have arrived at our ultimate structure:

Theorem 2. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an insertion and deletion in $O(\log_B N)$ I/Os amortized.

Remarks. It is natural to wonder whether we can apply it once more to lower the update time even further. The answer is negative because by utilizing the structure of Corollary 2 we have already conquered the bottleneck, which was the expensive update cost of the kd-tree in Corollary 1. The new bottleneck is the logarithmic cost of finding which cell to update, and cannot be improved any more.
References

