In this lecture, we will consider another fundamental problem in computer science: 3-sided range searching. Let \(P \) be a set of \(N \) points in \(\mathbb{R}^2 \). A rectangle is said to be 3-sided if it has the form \([x_1, x_2] \times [y, \infty) \), namely, its bottom edge is grounded at the bottom of the data space. Given a 3-sided rectangle \(q \), a 3-sided range query reports all the points of \(P \) covered by \(q \), namely, \(P \cap q \).

This problem generalizes the stabbing problem we discussed previously (think: why?). Interestingly, the persistent B-tree can also be used to solve the static version of the problem.

Lemma 1. There is a persistent B-tree that consumes \(O(N/B) \) space and answers a 3-sided range query in \(O((\log B N + K/B) I/Os) \), where \(K \) is the number of points reported.

Proof. From each point \(p \in P \), create a vertical ray shooting downwards from \(p \). Let \(R \) be the set of all such rays. Then, \(p \) falls in a 3-sided rectangle \(q = [x_1, x_2] \times [y, \infty) \) if and only if its ray intersects the horizontal segment \([x_1, x_2] \times y \). Hence, we can instead find all the rays in \(R \) intersecting \([x_1, x_2] \times y \), a problem that can be solved by a persistent B-tree with the performance claimed.

Next, we will introduce the external priority search tree \([1]\), which is a dynamic structure that has the same space and query cost as the persistent B-tree, but also supports an insertion and a deletion in \(O(\log_B N) I/Os \). Our discussion will make the tall cache assumption \(M \geq B^2 \). We also assume that \(P \) is in general position, namely, no two points in \(P \) have the same x- or y-coordinate.

1 Structure

The base tree of the external priority search tree is a weight balanced B-tree \(T \) on the set of x-coordinates of the points in \(P \). The leaf and branching parameters of \(T \) are both set to \(B \). Each node \(u \) in \(T \) naturally corresponds to a vertical slab \(\sigma(u) \) in \(\mathbb{R}^2 \). Denote by \(\text{sub}(u) \) the subtree of \(u \).

Each node \(u \) is associated with a pilot set denoted as \(\text{pilot}(u) \). Next, we define the pilot sets in a top-down fashion:

- Let \(v_{\text{root}} \) be the root of \(T \). If \(v_{\text{root}} \) is a leaf, then \(\text{pilot}(v_{\text{root}}) \) is simply \(P \) itself. Otherwise, suppose that \(v_{\text{root}} \) has \(f \) child nodes \(u_1, ..., u_f \). Then, \(\text{pilot}(v_{\text{root}}) \) is the union of the \(B \) highest points from each \(\text{sub}(u_i) \), for \(i \in [1, f] \).

- Now consider an internal node \(v \) with \(f \) child nodes \(u_1, ..., u_f \). Let \(\text{pilot}(v, u_i) \) be the \(B \) highest points in \(\text{sub}(u_i) \) after excluding the points that already appear in the pilot sets of the proper ancestors of \(v \). If less than \(B \) points satisfy the condition, \(\text{pilot}(v, u_i) \) includes all of them. Then, the pilot set \(\text{pilot}(v) \) of \(v \) simply unions \(\text{pilot}(v, u_1), ..., \text{pilot}(v, u_f) \).

- Finally, for a leaf node \(z \), \(\text{pilot}(z) \) is the set of points in \(\sigma(z) \) that do not belong to the pilot set of any proper ancestor of \(z \).

Note that each pilot set has at most \(B^2 \) points.
For each internal node \(v \), we associate \(v \) with a persistent B-tree \(T(v) \) built on \(\text{pilot}(v) \). To facilitate updates, we use a B-tree \(T'(u) \) to index the y-coordinates of the points in \(\text{pilot}(u) \). If \(z \) is a leaf node, it is associated with just an extra block to store \(\text{pilot}(z) \). The overall space consumption is \(O(N/B) \) (think: why?).

2 Query

We answer a query by reporting points only from the pilot sets. Given a query rectangle \(q = [x_1, x_2] \times [y, \infty) \), descend a root-to-leaf path \(\Pi_1 (\Pi_2) \) to the leaf node whose slab contains \(x_1 (x_2) \). For each node \(u \in \Pi_1 \cup \Pi_2 \), launch the following filtering search process:

- If \(u \) is a leaf node, simply report all the points in \(\text{pilot}(u) \) covered by \(q \).
- Otherwise, suppose that \(u_{i_1}, ..., u_{i_2} \) are the child nodes of \(u \) such that \(\sigma_j (i_1 \leq j \leq i_2) \) is contained in \([x_1, x_2] \times \mathbb{R} \). Let \(q' = \sigma_{i_1} \cup \sigma_{i_1+1} \cup ... \cup \sigma_{i_2} \). Search \(T(u) \) to report all the points in \(\text{pilot}(u) \) covered by \(q' \). For each \(j \in [i_1, i_2] \) such that \(B \) points have been reported, perform the filtering search process on \(u_j \).

The above algorithm correctly finds all the points in \(P \cap q \) (think: why?).

For each node \(u \) visited by the query algorithm, we spend \(O(1 + K_u/B) \) I/Os (see Lemma 1), where \(K_u \) is the number of points reported from \(T(u) \). Refer to the term “1” as the search cost at \(u \). The nodes visited can be divided into two groups: (i) those on \(\Pi_1 \) and \(\Pi_2 \), and (ii) those that are not (note that any such node \(u \) must have its slab \(\sigma(u) \) covered completely by \([x_1, x_2] \times \mathbb{R} \)). For each node \(u \) of the second group, \(\Omega(B) \) points in \(\sigma(u) \) must have been reported at the parent of \(u \). Hence, we charge the search cost of \(u \) on those points. In this way, each point reported bears \(O(1/B) \) additional I/Os. The overall query cost is therefore \(O(\log_B N + K/B) \) (think: how to account for the nodes of the first group?).

3 Updates

Next, we will make the external priority search tree dynamic.

3.1 The \(B^2 \)-Structure

Recall that each node \(u \) is associated with a persistent B-tree \(T(u) \). By applying the “single buffer block” trick for \(T(u) \) (see Lemma 2 of the lecture nodes on the external interval tree), we have:

Lemma 2. Under the tall-cache assumption, \(T(u) \) can be updated in \(O(1) \) amortized I/Os per insertion and deletion.

3.2 Demotion

Given a point \(p \) and a node \(u \) such that \(p \in \sigma(u) \), a demotion operation adds \(p \) to the unique pilot set (of some node) in \(\text{sub}(u) \) that should contain \(p \), according to the pilot set definition. If \(u \) is a leaf node, we simply place \(p \) in the block storing \(\text{pilot}(u) \).

Now consider that \(u \) is an internal node. Let \(u' \) be the child node of \(u \) such that \(\sigma(u') \) contains \(p \). If \(\text{pilot}(u, u') \) currently has less than \(B \) points, we finish by adding \(p \) to \(\text{pilot}(u) \), updating \(T(u) \) and \(T'(u) \) accordingly. Otherwise, we use \(T(u) \) to find the lowest point, say \(p' \), in \(\text{pilot}(u, u') \) in \(O(1) \) I/Os (think: how?). Then:
• If \(p \) is higher than \(p' \), remove \(p' \) from \(\text{pilot}(u) \) and add \(p \) to \(\text{pilot}(u) \) by updating \(T(u) \) and \(T'(u) \) appropriately. After this, perform a demotion operation with \(p' \) and \(u' \).
• Otherwise, simply perform a demotion operation with \(p \) and \(u' \).

In general, if \(u \) is at level \(l \), in the worst case we perform constant I/Os at each node along a single path from \(u \) to a leaf node. Hence, a demotion finishes in \(O(l + 1) \) I/Os.

3.3 Promotion

Conversely, given a node \(u \), sometimes we need to perform a promotion operation to remove from \(\text{pilot}(u) \) the highest point \(p \) there, if \(\text{pilot}(u) \) is not empty. If \(u \) is a leaf node, this is trivial.

Now consider that \(u \) is an internal node. We first obtain \(p \) from \(T'(u) \) in \(O(1) \) I/Os. Then, we remove \(p \) from \(\text{pilot}(u) \), updating \(T(u) \) and \(T'(u) \) appropriately. Suppose that \(u' \) is the child node of \(u \) whose slab \(\sigma(u') \) contains \(p \). Recursively promote a point, say \(p' \), from \(\text{pilot}(u') \), and add \(p' \) to \(\text{pilot}(u) \), updating \(T(u) \) and \(T'(u) \) appropriately.

In general, if \(u \) is at level \(l \), the promotion takes \(O(l + 1) \) I/Os.

3.4 Insertion

Assume that \(p \) is the point being inserted. We first insert the x-coordinate of \(p \) in \(T \), without handling the overflows that may have happened. Let \(\Pi \) be the root-to-leaf path we just followed. Launch a demotion operation with \(p \) and the root of \(T \). The cost so far is \(O(\log_B N) \).

Now we handle in bottom-up order the nodes that have overflowed during the insertion of \(p \) in \(T \). Let \(u \) be such a node and \(v \) its parent node. Split \(u \) into \(u_1 \), \(u_2 \) (as in the weight-balanced B-tree). Rebuild the secondary structures of \(u_1 \) and \(u_2 \) respectively in \(O(B) \) I/Os (recall that each secondary structure indexes at most \(B^2 \) points, which fit in memory). The split has divided \(\text{pilot}(v, u) \) into \(\text{pilot}(v, u_1) \) and \(\text{pilot}(v, u_2) \). Now \(\text{pilot}(v, u_1) \) may have less than \(B \) points. Hence, we perform up to \(B \) promotions to fill up \(\text{pilot}(v, u_1) \). Repeat the same for \(\text{pilot}(v, u_2) \). After this, rebuild the secondary structures of \(v \) in \(O(B) \) I/Os.

Assume that \(u \) is at level \(l \). If \(l = 0 \), the overflow handling finishes in constant I/Os. Otherwise, the cost is \(O(lB) \). As \(T \) is a weight-balanced B-tree, the weight of \(u \) is \(\Theta(B^{l+1}) \), meaning that \(\Omega(B^{l+1}) \) updates have been performed in \(\text{sub}(u) \) since the creation of \(u \). Hence, we can amortize the overflow handling cost over those updates, such that each of them bears \(O(lB/B^{l+1}) = O(1) \). As each update can bear such a cost at most \(O(\log_B N) \) times, each insertion can be performed in \(O(\log_B N) \) I/Os amortized.

3.5 Deletion

It is easy to maintain the pilot sets in \(O(\log_B N) \) I/Os per deletion (we leave the details to you but obviously you need to use promotion). Recall that, in answering a query, we report points only from pilot sets. This suggests that we can avoid underflows in the base tree \(T \) with global rebuilding, in a way similar to what we did in the external interval tree. With this, we conclude:

Theorem 1. **Under the tall-cached assumption, there exists a structure on a set of \(N \) points that uses \(O(N/B) \) space, answers a 3-sided range query in \(O(\log_B N + K/B) \), and can be updated in \(O(\log_B N) \) amortized I/Os per insertion and deletion.**

Remarks. Arge, Samoladas and Vitter [1] showed that the above theorem still holds even without the tall-cache assumption, and that the update cost can be made worst-case. The filtering search idea was first proposed by Chazelle [2].
References
