In the following problems, B is the block size, and M is the memory capacity. You can assume $M \geq B^2$ if necessary.

Problem 1. Let $L = \{\ell_1, \ldots, \ell_l\}$ be a set of l vertical lines in \mathbb{R}^2, where $l = B^{O(1)}$. Let S be a set of N horizontal segments such that each segment in S has its endpoints on two different lines in L. Given a vertical ray r shooting downwards from a point, a query reports all the segments in S intersecting r. Give a structure on S that consumes $O(N/B)$ space, and answers a query in $O(1 + K/B)$ I/Os, where K is the number of segments reported. Your structure also needs to support an insertion and a deletion in $O(\log BN)$ I/Os amortized.

Problem 2. Let S be a set of N horizontal segments in \mathbb{R}^2. Give a structure on S that consumes $O(N/B)$ space, and answers a query of Problem 1 in $O(\log_B^2 N + K/B)$ I/Os, where K is the number of segments reported. Your structure also needs to support an insertion and a deletion in $O(\log_B^2 N)$ I/Os amortized.

Problem 3 (three-sided range reporting on rectangles). Let S be a set of axis-parallel rectangles in \mathbb{R}^2. Given a 3-sided rectangle $q = [x_1, x_2] \times [y, \infty)$, a query reports all the rectangles in S that intersect q. Describe a fully dynamic structure on S that consumes $O(N/B)$ space, answers a query in $O(\log_B^2 N + K/B)$ I/Os (where K is the number of reported rectangles), and supports an update in $O(\log_B^2 N)$ I/Os amortized.