CSCI 5020 External Data Structures: Exercise List 4

In the following problems, B is the block size, and M is the memory capacity.

Problem 1. Modify the external interval tree to achieve the same performance (i.e., linear space, logarithmic query time, and logarithmic update time amortized) under the assumption that $M = B^{1.5}$.

Problem 2. Assuming $M \geq B^2$, describe an algorithm to construct an external interval tree on N intervals in $O(\frac{N}{B} \log_B N)$ I/Os.

Problem 3 (Ray shooting on rays). Let S be a set of N horizontal rays in \mathbb{R}^2 shooting towards right, i.e., each ray in S has the form $[x, \infty) \times y$. Given a point q in \mathbb{R}^2, a ray shooting query finds the first ray that is hit by a vertical ray shooting upwards from q. Describe a structure that uses $O(N/B)$ space and answers a ray shooting query in $O(\log_B N)$ I/Os. Make your structure fully dynamic such that each insertion and deletion can be supported in $O(\log_B N)$ I/Os.