CSCI 5020 External Data Structures: Assignment 1
(Submission Deadline: 30 June 2011)

In the following problems, B equals the block size; and you can assume that the amount of memory M is at least B^2 if necessary.

Problem 1 (25%). Let \mathcal{I} be a set of N intervals in \mathbb{R}. Given a interval q in \mathbb{R}, a range query reports all the intervals in \mathcal{I} intersecting q (two intervals intersect if they cover at least one common value). Describe how to maintain \mathcal{I} in a fully dynamic structure that consumes $O(N/B)$ space, answers a query in $O(\log_B N \cdot \log_B N + K/B)$ I/Os (where K is the number of intervals reported), and supports each insertion and deletion in $O(\log_B N)$ I/Os.

Problem 2 (35%). Let \mathcal{I} be a set of N intervals in \mathbb{R} that do not partially intersect each other. That is, for any two intervals s_1, s_2 in \mathcal{I}, exactly one of the following can happen:

- they are disjoint;
- s_1 is covered by s_2 (i.e., $s_1 \subseteq s_2$);
- s_2 is covered by s_1.

Given a value in \mathbb{R}, an order-sensitive stabbing query reports all the intervals of \mathcal{I} covering q in ascending order of their left endpoints. Describe a fully dynamic structure to index \mathcal{I} such that the structure consumes $O(N/B)$ space, answers a query in $O(\log_B N \cdot \log_B N + K/B)$ I/Os (where K is the number of intervals reported), and supports each insertion and deletion in $O(\log_B N)$ I/Os.

Problem 3 (30%). Let S be a set of N horizontal segments in \mathbb{R}^2. Given a point q, a ray shooting query reports the first segment in S above q, namely, the first segment of S hit by a vertical ray emanating upwards from q. Describe a fully dynamic structure that consumes $O(N/B)$ space, answers a query in $O(\log_B^2 N)$ I/Os, and supports the insertion and deletion of a segment in S using $O(\log_B^2 N)$ amortized I/Os.

Problem 4 (10%). Improve the update time of your structure in Problem 3 to $O(\log_B N)$ amortized, while still ensuring the same space and query performance.