Lecture Notes: Legality Means Delaunay

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

March 26, 2024

This document is supplementary to the main lecture notes and provides an alternative proof for:
Theorem 1. Let P be a set of $2 D$ points in general position (no four points are on the same circle). If G is a legal triangulation of P, then G must be the Delaunay triangulation of P.

If a triangle has vertices A, B, and C, we denote the triangle as $\triangle A B C$. Consider its circumcircle $\odot A B C$. The points A, B, and C divide the circle into three arcs: $\widehat{A C}, \widehat{C B}$, and $\widehat{B A}$. We define the territory of $\widehat{A C}$ inside $\odot A B C$ as the region bounded by segment $\overline{A C}$ and arc $\widehat{A C}$ (see the gray area in the figure below).

We will need the rudimentary geometric fact below (proof left as an exercise):
Lemma 2. Let D be a point outside $\odot A B C$ such that points B and D fall on different sides of the line passing through segment $\overline{A C}$. Then, $\odot A C D$ covers the territory of arc $\widehat{A C}$ inside $\odot A B C$ (see the figure below for an illustration).

To prove Theorem 1, it suffices to establish the following claim:

Claim: The circumcircle of each triangle in G contains no points of P in the interior.

Assume, for contradiction, that the circumcircle of some triangle Δ in G contains a point $p \in P$ in the interior. Name the vertices of Δ as A, B, and C in such way that points p and B fall on
different sides of the line passing $A C$. Such naming is possible because p does not fall inside Δ (recall that G is a triangulation of P). Identify an arbitrary point π_{0} in the interior of segment $\overline{A C}$. W.l.o.g., we consider that no point of P lies in the interior of segment $\overline{\pi_{0} p}$ (otherwise, redefine p to that point).

Shoot a ray ρ from from π_{0} to p. The ray passes through a sequence of triangles $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{t}$ satisfying:

- $\Delta_{0}=\triangle A B C ;$
- Δ_{i} and Δ_{i+1} share an edge for each $i \in[0, t-1] ;$
- p is a vertex of Δ_{t}.

We will show that the edge shared by Δ_{t-1} and Δ_{t} must be illegal, thus contradicting the fact that G is a legal triangulation. This will validate the claim and, hence, Theorem 1.

For each $i \in[0, t-1]$, define π_{i} as the point where ρ exits Δ_{i} (this is also the point where ρ enters Δ_{i+1}).

Lemma 3. For each $i \in[0, t-1]$, the circumcircle of $\Delta_{i}-$ denoted as $\odot_{i}-$ covers the segment $\overline{\pi_{i} p}$.

Proof. We will prove the lemma by induction. Its correction for $i=0$ follows directly from the definition of π_{0} and p. Assuming that the lemma holds for $i=k \in[0, t-2]$, next we will prove its correctness for $i=k+1$.

Name the vertices of Δ_{k} as A_{k}, B_{k} and C_{k} in such a way that points B_{k} and p fall on different sides of the line passing segment $\overline{A_{k} C_{k}}$. By the inductive assumption, circle \odot_{k} covers segment $\overline{\pi_{k} p}$. This means that $\overline{\pi_{k} p}$ falls in the territory of segment $\overline{A_{k} C_{k}}$ in \odot_{k}. See the figure above for an illustration.

Points A_{k} and C_{k} must be two vertices of Δ_{k+1}; denote by D the remaining vertex of Δ_{k+1}. By the fact that $\overline{A_{k} C_{k}}$ is a legal edge, point D must fall outside \odot_{k}. Lemma 2 then assures us that circle \odot_{k+1} (the circumcircle of $\Delta A_{k} C_{k} D$) covers the territory of segment $\overline{A_{k} C_{k}}$ in \odot_{k}. This further implies that \odot_{k+1} must cover the entire segment $\overline{\pi_{k} p}$ and, hence, the segment $\overline{\pi_{k+1} p}$.

We now know that \odot_{t-1} covers segment $\overline{\pi_{t-1} p}$. As p cannot be on (the boundary of) \odot_{t-1} (no four points co-circular), p must be in the interior of \odot_{t-1}. By this contradicts the fact that the edge shared by Δ_{t-1} and Δ_{t} is legal.

