Lecture Notes: Legality Means Delaunay

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

March 26, 2024

This document is supplementary to the main lecture notes and provides an alternative proof for:

Theorem 1. Let P be a set of 2D points in general position (no four points are on the same circle). If G is a legal triangulation of P, then G must be the Delaunay triangulation of P.

If a triangle has vertices A, B, and C, we denote the triangle as ΔABC . Consider its circumcircle $\odot ABC$. The points A, B, and C divide the circle into three arcs: \widehat{AC} , \widehat{CB} , and \widehat{BA} . We define the *territory* of \widehat{AC} inside $\odot ABC$ as the region bounded by segment \overline{AC} and arc \widehat{AC} (see the gray area in the figure below).

We will need the rudimentary geometric fact below (proof left as an exercise):

Lemma 2. Let D be a point outside $\odot ABC$ such that points B and D fall on different sides of the line passing through segment \overline{AC} . Then, $\odot ACD$ covers the territory of arc \widehat{AC} inside $\odot ABC$ (see the figure below for an illustration).

To prove Theorem 1, it suffices to establish the following claim:

Claim: The circumcircle of each triangle in G contains no points of P in the interior.

Assume, for contradiction, that the circumcircle of some triangle Δ in G contains a point $p \in P$ in the interior. Name the vertices of Δ as A, B, and C in such way that points p and B fall on different sides of the line passing AC. Such naming is possible because p does not fall inside Δ (recall that G is a triangulation of P). Identify an arbitrary point π_0 in the interior of segment \overline{AC} . W.l.o.g., we consider that no point of P lies in the interior of segment $\overline{\pi_0 p}$ (otherwise, redefine p to that point).

Shoot a ray ρ from from π_0 to p. The ray passes through a sequence of triangles $\Delta_0, \Delta_1, ..., \Delta_t$ satisfying:

- $\Delta_0 = \Delta ABC;$
- Δ_i and Δ_{i+1} share an edge for each $i \in [0, t-1]$;
- p is a vertex of Δ_t .

We will show that the edge shared by Δ_{t-1} and Δ_t must be illegal, thus contradicting the fact that G is a legal triangulation. This will validate the claim and, hence, Theorem 1.

For each $i \in [0, t-1]$, define π_i as the point where ρ exits Δ_i (this is also the point where ρ enters Δ_{i+1}).

Lemma 3. For each $i \in [0, t-1]$, the circumcircle of Δ_i — denoted as \odot_i — covers the segment $\overline{\pi_i p}$.

Proof. We will prove the lemma by induction. Its correction for i = 0 follows directly from the definition of π_0 and p. Assuming that the lemma holds for $i = k \in [0, t - 2]$, next we will prove its correctness for i = k + 1.

Name the vertices of Δ_k as A_k, B_k and C_k in such a way that points B_k and p fall on different sides of the line passing segment $\overline{A_k C_k}$. By the inductive assumption, circle \odot_k covers segment $\overline{\pi_k p}$. This means that $\overline{\pi_k p}$ falls in the territory of segment $\overline{A_k C_k}$ in \odot_k . See the figure above for an illustration.

Points A_k and C_k must be two vertices of Δ_{k+1} ; denote by D the remaining vertex of Δ_{k+1} . By the fact that $\overline{A_k C_k}$ is a legal edge, point D must fall outside \odot_k . Lemma 2 then assures us that circle \odot_{k+1} (the circumcircle of $\Delta A_k C_k D$) covers the territory of segment $\overline{A_k C_k}$ in \odot_k . This further implies that \odot_{k+1} must cover the entire segment $\overline{\pi_k p}$ and, hence, the segment $\overline{\pi_{k+1} p}$.

We now know that \odot_{t-1} covers segment $\overline{\pi_{t-1}p}$. As p cannot be on (the boundary of) \odot_{t-1} (no four points co-circular), p must be in the interior of \odot_{t-1} . By this contradicts the fact that the edge shared by Δ_{t-1} and Δ_t is legal.