Lecture Notes: Minimum Enclosing Balls

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

March 26, 2024

Let P be a set of n points in \mathbb{R}^{d}. We want to find a ball B with the smallest radius to cover all the points in P. We refer to B as the minimum enclosing ball (MEB) of P and denote it as MEB (P). The MEB of P can be found in $O(n)$ expected time in any constant dimensionality. This lecture will explain how to do so in 2D space, and in an exercise you will be asked to extend the algorithm to $d \geq 3$. Our discussion will make the general position assumption that no four points fall on the same circle.

1 Geometric Facts in 2D Space

Lemma 1. There is only one ball with the smallest radius covering all the points in P.
Proof. Assume, on the contrary, that there are two such balls B_{1} and B_{2}; see the figure below. Then, P must be covered by the shaded area. Let π_{1} and π_{2} the intersection points of the two balls. Consider the ball B centering at the midpoint o of the segment $\overline{\pi_{1} \pi_{2}}$ and having a radius half the length of $\overline{\pi_{1}} \pi_{2}$. The ball B covers the shaded area (and hence, also P) but is smaller than B_{1} and B_{2}, giving a contradiction.

Lemma 2. The boundary of $\operatorname{MEB}(P)$ passes at least two points of P.
Proof. Let C be the boundary of $\operatorname{MEB}(P)$. If C passes no points of P, shrink C infinitesimally to obtain a smaller ball still covering P, which contradicts the definition of C.

Suppose that C passes only one point $p \in P$. Let o be the center of C. Consider sliding a point o^{\prime} from o towards p infinitesimally, and look at the circle C^{\prime} centered at o^{\prime} with radius equal to the length of segment $\overline{o^{\prime} p} . C^{\prime}$ is smaller than C but still contains P in the interior. This again gives a contradiction.

Lemma 3. Let C_{1} and C_{2} be two intersecting circles such that C_{1} is no larger than C_{2} (in terms of radius). Denote by L the area inside both circles. Consider an arbitrary point p that is covered by C_{2} but not by C_{1}. Then, there exists a circle C that is smaller than C_{2}, passes points p, π_{1}, π_{2}, and covers the area L.

See the figure below for an illustration, where C is the circle in dashed line.

Proof. Let us first review a rudimentary geometric fact. Fix two distinct points π_{1} and π_{2}. Consider all the circles passing both π_{1} and π_{2}. The centers of these circles must be on the perpendicular bisector of segment $\overline{\pi_{1} \pi_{2}}$. Every such circle C can be divided into (i) a left arc, which is the part of C on the left of $\overline{\pi_{1} \pi_{2}}$, and (ii) a right arc, which is the part of C on the right of $\overline{\pi_{1} \pi_{2}}$. As the center o of C moves away from the midpoint m of segment $\overline{\pi_{1} \pi_{2}}$ towards right, the left arc "morphs" towards $\overline{\pi_{1} \pi_{2}}$, while the right arc "morphs" away from $\overline{\pi_{1} \pi_{2}}$; furthermore, C grows continuously. The behavior is symmetric when o moves towards left.

Returning to the context of the lemma, let π_{1} and π_{2} be the intersection points of C_{1} and C_{2}. Imagine "morphing" a circle C from C_{2} to C_{1} while ensuring that C passes π_{1} and π_{2}. Stop as soon as the right arc of C hits p. As C_{1} is no larger than C_{2}, we know that C must be smaller than C_{2} (think: why?). Thus, C is the circle we are looking for.

2 Two Points Are Known

Next, we will discuss a variant of the MEB problem. Let p_{1} and p_{2} be two points in P such that at least one ball has the following property: it encloses the entire P and its boundary passes both p_{1} and p_{2}. We want to find such a ball with the smallest radius, denoted as $\operatorname{MEB}\left(P,\left\{p_{1}, p_{2}\right\}\right)$; this ball must be unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve the problem in $O(n)$ time using the algorithm below.

```
Algorithm 1: Two-Points-Fixed-MEB \(\left(P,\left\{p_{1}, p_{2}\right\}\right)\)
    \(B \leftarrow\) the smallest ball covering \(p_{1}\) and \(p_{2}\)
    \(\left(p_{3}, p_{4}, \ldots, p_{n}\right) \leftarrow\) an arbitrary permutation of the other points in \(P\)
    for \(i=3\) to \(n\) do
        if \(p_{i} \notin B\) then
                \(B \leftarrow\) the ball whose boundary passes \(p_{1}, p_{2}\), and \(p_{i}\)
    return \(B\)
```

The next lemma proves the algorithm's correctness.
Lemma 4. Define $P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$ for each $i \in[1, n]$. For any $i \in[2, n]$, define $B_{i}^{*}=\operatorname{MEB}\left(P_{i},\left\{p_{1}, p_{2}\right\}\right)$. If $p_{i+1} \in B_{i}^{*}$, then $B_{i+1}^{*}=B_{i}^{*}$. Otherwise, the boundary of B_{i+1}^{*} must pass p_{i+1}.

Proof. If $p_{i+1} \in B_{i}^{*}$, then $B_{i+1}^{*}=B_{i}^{*}$ follows from the uniqueness of $\operatorname{MEB}\left(P_{i+1},\left\{p_{1}, p_{2}\right\}\right)$. Next, we consider $p_{i+1} \notin B_{i}^{*}$.

Assume on the contrary that the boundary of B_{i+1}^{*} does not pass p_{i+1}. Hence, p_{i+1} falls in the interior B_{i+1}^{*}. The radius of B_{i+1}^{*} cannot be smaller than that of B_{i}^{*} (both of them cover P_{i} and pass p_{1} and p_{2}, but B_{i}^{*} is $\left.\operatorname{MEB}\left(P_{i},\left\{p_{1}, p_{2}\right\}\right)\right)$. The entire P_{i} must fall in the intersection of B_{i}^{*} and B_{i+1}^{*} (the shaded area in the figure below). By Lemma 3, there exists a ball smaller than B_{i+1}^{*} covering P_{i+1} and passing p_{1}, p_{2}, which gives a contradiction.

3 One Point Is Known

Next, we will look at a less restrictive variant of the problem. Let p_{1} be a point in P such that at least one ball has the following property: it encloses the entire P and its boundary passes p_{1}. We want to find such a ball with the smallest radius, denoted as $\operatorname{MEB}\left(P,\left\{p_{1}\right\}\right)$; this ball must be unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve the problem using the algorithm below.

```
Algorithm 2: One-Point-Fixed-MEB \(\left(P,\left\{p_{1}\right\}\right)\)
    \(\left(p_{2}, p_{3}, \ldots, p_{n}\right) \leftarrow\) a random permutation of \(P \backslash\left\{p_{1}\right\}\)
    \(B \leftarrow\) the smallest ball covering \(p_{1}\) and \(p_{2}\)
    for \(i=3\) to \(n\) do
        if \(p_{i} \notin B\) then
            \(B \leftarrow\) Two-Points-Fixed-MEB \(\left(\left\{p_{1}, \ldots, p_{i}\right\},\left\{p_{1}, p_{i}\right\}\right)\)
    return \(B\)
```

The next lemma proves the algorithm's correctness.
Lemma 5. Define $P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$ for each $i \in[1, n]$. For any $i \in[2, n]$, define $B_{i}^{*}=\operatorname{MEB}\left(P_{i},\left\{p_{1}\right\}\right)$. If $p_{i+1} \in B_{i}^{*}$, then $B_{i+1}^{*}=B_{i}^{*}$. Otherwise, the boundary of B_{i+1}^{*} must pass p_{i+1}.

Proof. The argument is nearly identical to the one used to prove Lemma 4. We will focus only one the case where $p_{i+1} \notin B_{i}^{*}$.

Assume on the contrary that the boundary of B_{i+1}^{*} does not pass p_{i+1}. Hence, p_{i+1} falls in the interior B_{i+1}^{*}. The radius of B_{i+1}^{*} cannot be smaller than that of B_{i}^{*}. The entire P_{i} must fall in the intersection of B_{i}^{*} and B_{i+1}^{*} (the shaded area in the figure below). By Lemma 3, there exists a ball smaller than B_{i+1}^{*} covering P_{i+1} and passing p_{1}, which gives a contradiction.

Let us analyze the running time of the algorithm. Let t_{i} be the expected time of the iteration (Lines 3-5) for a specific $i \in[3, n]$. We will prove $\mathbf{E}\left[t_{i}\right]=O(1)$. At the beginning of the iteration, $B=B_{i-1}^{*}$ (guaranteed by the above lemma). The iteration takes $O(i)$ time if $p_{i} \notin B_{i-1}^{*}$, or $O(1)$ time otherwise.

Other than p_{1}, the boundary of B_{i-1}^{*} must pass at least one more point in P_{i} (the proof is similar to that of Lemma 2 and left to you), but no more than two more points (due to our general position assumption). We deal with these cases separately:

- B_{i-1}^{*} passes two more points $\pi_{1}, \pi_{2} \in P_{i}$. The event $p_{i} \notin B_{i-1}^{*}$ occurs only if $p_{i}=\pi_{1}$ or $p_{i}=\pi_{2}$, which happens with probability $2 /(i-1)$ (backward analysis).
- B passes only one more point $\pi_{1} \in P_{i}$. The event $p_{i} \notin B_{i-1}^{*}$ occurs only if $p_{i}=\pi_{1}$, which happens with probability $1 /(i-1)$ (backward analysis).
It thus follows that $\mathbf{E}\left[t_{i}\right]=O(1)$.

4 No Point Is Known

We are ready to tackle the MEB problem in its most general form.

```
Algorithm 3: \(\operatorname{MEB}(P)\)
    \(\left(p_{1}, \ldots, p_{n}\right) \leftarrow\) a random permutation of \(P\)
    \(B \leftarrow\) the smallest ball covering \(p_{1}\) and \(p_{2}\)
    for \(i=3\) to \(n\) do
        if \(p_{i} \notin B\) then
            \(B \leftarrow\) One-Point-Fixed-MEB \(\left(\left\{p_{1}, \ldots, p_{i}\right\},\left\{p_{i}\right\}\right)\)
    return \(B\)
```

The next lemma proves the algorithm's correctness.
Lemma 6. Define $P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$ for each $i \in[1, n]$. For any $i \in[2, n]$, define $B_{i}^{*}=\operatorname{MEB}\left(P_{i}\right)$. If $p_{i+1} \in B_{i}^{*}$, then $B_{i+1}^{*}=B_{i}^{*}$. Otherwise, the boundary of B_{i+1}^{*} must pass p_{i+1}.

Proof. The argument is again nearly identical to the one used to prove Lemma 4. We will discuss only the case where $p_{i+1} \in B_{i}^{*}$. Assume on the contrary that the boundary of B_{i+1}^{*} does not pass p_{i+1}. Hence, p_{i+1} falls in the interior B_{i+1}^{*}. The radius of B_{i+1}^{*} cannot be smaller than that of B_{i}^{*}. The entire P_{i} must fall in the intersection of B_{i}^{*} and B_{i+1}^{*}. By Lemma 3, there exists a ball smaller than B_{i+1}^{*} covering P_{i+1}, which gives a contradiction.

We can once again apply backward analysis to prove that Algorithm 3 runs in $O(n)$ expected time. The details should have become straightforward and are left as an exercise.

