Lecture Notes: The Core of Backward Analysis

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

March 12, 2024

Backward analysis is a technique often deployed to bound the expected running time of randomized algorithms. In this lecture, we will discuss its core ideas through a contrived example. The next few lectures will apply the technique to deal with non-trivial computational geometry problems.

Preliminaries. We will start by reviewing a rudimentary fact about probabilities. Let A be an arbitrary event, and let $B_{1}, B_{2}, \ldots, B_{k}$ (for any integer $k \geq 2$) be mutually disjoint events that form a partition of the probability space. It holds that

$$
\begin{equation*}
\operatorname{Pr}[A]=\sum_{i=1}^{k} \operatorname{Pr}\left[A \mid B_{i}\right] \cdot \operatorname{Pr}\left[B_{i}\right] . \tag{1}
\end{equation*}
$$

For example, consider rolling a dice (with six facets) 10 times, each time getting a number from 1 to 6 . Let A be the event "the 10 numbers obtained add up to at least 30 ". Set $k=11$ and for each $i \in[0,10]$, define B_{i} be the event "among the 10 numbers obtained, i of them are 1 ". The events $B_{0}, B_{1}, \ldots, B_{10}$ are mutually disjoint and cover the whole probability space because exactly one of those events must occur in any case. From (1), we have $\operatorname{Pr}[A]=\sum_{i=0}^{10} \operatorname{Pr}\left[A \mid B_{i}\right] \cdot \operatorname{Pr}\left[B_{i}\right]$.

A "Silly" Algorithm. Suppose that, given a set S of $n \geq 3$ integers, our goal is to compute its minimum bounding interval (MBI) $[x, y]$, namely, x (resp., y) is the smallest (resp., largest) integer of S. This can be trivially done in $O(n)$ time, but our purpose is to illustrate backward analysis through the following algorithm.

algorithm silly-MBI

1. randomly permute S and store the result in array A
/* this can be done in $O(n)$ time; see the appendix */
2. $x \leftarrow \min \{A[1], A[2]\}$ and $y \leftarrow \max \{A[1], A[2]\}$
3. for $i=3$ to n do
4. if $A[i] \in[x, y]$ then continue else set $x \leftarrow \min \{A[1], A[2], \ldots, A[i]\}$ by scanning $A[1], A[2], \ldots, A[i]$ again
5. set $y \leftarrow \max \{A[1], A[2], \ldots, A[i]\}$ by scanning $A[1], A[2], \ldots, A[i]$ again /* note: Lines 5-6 cost $O(i)$ time */

What a silly algorithm! Clearly, it requires $O\left(n^{2}\right)$ time in the worst case. At Line 5 , any smart student will choose to update x as $\min \{x, A[i]\}$, which takes only $O(1)$ time, as opposed to $O(i)$; a similar statement can be said about Line 6 . These simple changes will allow you to reduce the time complexity from $O\left(n^{2}\right)$ to $O(n)$!

Perhaps you would be surprised to learn that the silly-MBI algorithm is not too bad after all: its expected running time is $O(n)$! Next, we will use backward analysis to prove it.

Analysis. We will focus on Lines 3-6, which perform an iteration for each $i \in[3, n]$. The iteration for i takes

- $O(1)$ time if $A[i] \in[x, y]$ - in this case, we call this a lucky iteration;
- or $O(i)$ time otherwise - in this case, we call this an unlucky iteration.

Let us introduce a random variable:

$$
X_{i}= \begin{cases}1 & \text { if the iteration of } i \text { is unlucky } \\ 0 & \text { if the iteration of } i \text { is lucky }\end{cases}
$$

Thus, the iteration of i has an expected running time of $O(1)+\operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)$. Hence, we can bound the overall expected cost of Lines 3-6 as

$$
\begin{equation*}
\sum_{i=3}^{n} O(1)+\operatorname{Pr}\left[X_{i}=1\right] \cdot O(i) \tag{2}
\end{equation*}
$$

We will prove:
Lemma 1. $\operatorname{Pr}\left[X_{i}=1\right]=2 / i$.
Given the above lemma, the expected cost of silly-MBI in (2) evaluates to $O(n)$, as claimed. Before proving the lemma in general, let us discuss the special case of $i=n$: how to analyze $\operatorname{Pr}\left[X_{n}=1\right]$? For this purpose, observe that the iteration of $i=n$ is unlucky if and only if $A[n]$ is either the smallest or largest element of S. Due to random permutation (performed at Line 1 of silly-MBI), every element of S has the same chance to sit at $A[n]$. It thus follows that $\operatorname{Pr}\left[X_{n}=1\right]=2 / n$.

We are now ready to prove Lemma 1 for any $i \in[3, n-1]$. Define a random variable

$$
\Pi=\text { the sequence } A[i+1], A[i+2], \ldots, A[n]
$$

Because the permutation is random, Π can take $n!/ i!$ possible "values", each being a different way to permute $n-i$ elements of S; furthermore, each of those "values" occurs with the same probability. To put this formally, let π be any possible permutation of $n-i$ elements of S, it holds that

$$
\operatorname{Pr}[\Pi=\pi]=i!/ n!.
$$

We now apply (1) to derive

$$
\begin{align*}
\operatorname{Pr}\left[X_{i}=1\right] & =\sum_{\text {all } \pi} \operatorname{Pr}\left[X_{i}=1 \mid \Pi=\pi\right] \cdot \operatorname{Pr}[\Pi=\pi] \\
& =\frac{i!}{n!} \sum_{\text {all } \pi} \operatorname{Pr}\left[X_{i}=1 \mid \Pi=\pi\right] \tag{3}
\end{align*}
$$

We will argue shortly that $\operatorname{Pr}\left[X_{i}=1 \mid \Pi=\pi\right]$ is always $2 / i$, with which we obtain

$$
(3)=\frac{i!}{n!} \sum_{\text {all } \pi} \frac{2}{i}=2 / i
$$

where the last step used the fact that there are $n!/ i$! different π.

All that remains is to prove $\operatorname{Pr}\left[X_{i}=1 \mid \Pi=\pi\right]=2 / i$. This, in fact, is no more complicated than proving $\operatorname{Pr}\left[X_{n}=1\right]=2 / i$. Denote by $S \backslash \pi$ the set of elements in S that are outside π, namely, $S \backslash \pi=\{e \in S \mid e \notin \pi\}$. Under the event $\Pi=\pi$, the iteration of i is unlucky if and only if $A[i]$ is the smallest or largest element of $S \backslash \pi$. It thus follows that $\operatorname{Pr}\left[X_{i}=1 \mid \Pi=\pi\right]=2 / i$.

The approach we used to prove $\operatorname{Pr}\left[X_{i}=1\right]$ is what is known as backward analysis.
Random Permutation. Let A be an array of n elements. The following algorithm computes a random permutation of A :

algorithm permute

1. for $i=2$ to n do
2. $\quad x \leftarrow$ a random number in $[1, i]$
3. swap $A[i]$ and $A[x]$
/* note: the swap has no effect if $i=x^{*} /$
The algorithm finishes in $O(n)$ time.
