Grid Decomposition: Closest Pair

Yufei Tao
CSE Dept
Chinese University of Hong Kong

Lemma (Packing Lemma): Impose a regular grid on \mathbb{R}^{d} where every cell is a box with side length s on each dimension. Any ball with radius r can overlap with no more than

$$
\left(1+\left\lceil\frac{2 r}{s}\right\rceil\right)^{d}
$$

cells.

When d and r / s are constants, the number of overlapping cells is $O(1)$.

The packing lemma is surprisingly useful for solving computational geometry problems. Today, we will demonstrate an application of the lemma on the closest pair problem.

Let P be a set of points \mathbb{R}^{d}. The objective of the closest pair problem is to return a pair of distinct points $p, q \in P$ with the smallest Euclidean distance to each other.

Example:

The answer is $\left(p_{6}, p_{8}\right)$.

We will present an algorithm to solve the closest pair problem in $O(n \log n)$ expected time.

We will focus on 2D. Divide P evenly using a vertical line ℓ. Let P_{1} (or P_{2}) be the set of points on the left (or right) of ℓ. Recursively find the closest pairs in P_{1} and P_{2}, respectively.
$r_{1}=$ the distance of the closest pair in P_{1}
$r_{2}=$ the distance of the closest pair in P_{2}.
Define $r=\min \left\{r_{1}, r_{2}\right\}$.

Example:

The closest pair of P_{1} is $\left(p_{2}, p_{3}\right)$ and that of P_{2} is $\left(p_{7}, p_{8}\right)$. Hence, $r_{1}=\sqrt{8}, r_{2}=3$, and $r=\min \left\{r_{1}, r_{2}\right\}=\sqrt{8}$.

Next, we consider the cross pairs $\left(p_{1}, p_{2}\right)$ where $p_{1} \in P_{1}$ and $p_{2} \in P_{2}$.

Observation: We can focus on only the cross pairs within distance r.

Impose a grid G where (i) each cell is an axis-parallel square with side length $r / \sqrt{2}$, and (ii) ℓ is a line in the grid.

Each point p can be covered by at most 4 cells.

For each cell c, denote by $c(P)$ the set of points in P covered by c.
Observation: For every $c,|c(P)| \leq 2$.

The diagonal of c has length r. Convince yourself that c covering more than 2 points would contradict the definition of r.

Group the points by the cells they belong. A cell is non-empty if it covers at least one point. There can be at most $4 n$ non-empty cells.

Example:

The non-empty cells are marked with numbers.

For each cell c, create a linked list containing the points in $c(P)$. This can be done in $O(n)$ expected time by hashing.

Two cells c_{1} and c_{2} are r-neighbors if their minimum distance is at most r.

Observation: A cell can have $O(1) r$-neighbor cells (Packing Lemma).

Example:

The r-neighbors of cell 12 are cells $5,6,7,8,9,10,11,13,14,16$, $17,19,20,21$, and 22.

It suffices to consider non-empty cells c_{1} and c_{2} such that (i) c_{1} (resp., c_{2}) is on the left (resp., c_{2}) of ℓ, and (ii) they are r-neighbors.

Example:

We need to consider the cell pair $(5,11)$, but not $(5,15)$.

The above discussion motivates the following algorithm for finding the closest cross pair within distance r :

1. for every non-empty cell c_{1} on the left of ℓ
2. for every r-neighbor cell c_{2} of c_{1} on the right of ℓ
3. calculate the distance of each pair of points $\left(p_{1}, p_{2}\right) \in c_{1}(P) \times c_{2}(P)$
4. return the closest one among all the pairs inspected at Line 3 within distance r.

Think: How to implement the algorithm in $O(n)$ time?

Let $f(n)$ be the expected running time of our algorithm on n points. It follows that

$$
f(n) \leq 2 \cdot f(n / 2)+O(n)
$$

while $f(n)=O(1)$ for $n \leq 2$. The recurrence solves to $f(n)=O(n \log n)$.

