
Lecture Notes: An Output-Sensitive Algorithm for 2D Maxima

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

January 22, 2024

In this lecture, we will revisit the maxima problem defined. Let us recall the relevant definitions.
Given two different points (x1, y1) and (x2, y2) in R2, we say that the former dominates the latter if
x1 ≥ x2 and y1 ≥ y2 (note that the two equalities cannot hold simultaneously because these are two
different points). Let P be a set of n points in R2. A point p ∈ P is a maximal point of P if p is not
dominated by any point in P . The goal is to report all the maximal points of P efficiently. In the
example of Figure 1, points 1, 2, 6, and 8 should be reported.

8

6

2

4

7
3

5

1

Figure 1: An example

The problem can be easily solved in O(n log n) time. Today, we will give an output-sensitive
algorithm that finishes in O(n log k) time, where k is the number of maximal points. The technique
behind this algorithm can be deployed to obtain output-sensitive algorithms for other problems as
well, e.g., convex hull.

Before continuing, let us first observe a simple O(nk) time algorithm. First, find the rightmost
point p of P in O(n) time, which must be a maximal point. Then, in O(n) time remove from P (i)
all the points dominated by p and also (ii) p itself. Now, the rightmost point of (the remaining) P
is also guaranteed to be a maximal point. Repeat the above steps until P becomes empty.

1 Utilizing An Upper Bound of k

Let us first assume that, by magic, we know an upper bound k̂ of k (e.g., k̂ = n is a trivial upper
bound). We will design an algorithm whose efficiency depends on k̂.

First, divide P by x-coordinate into k̂ subsets P1, ..., Pk̂ such that

• every point in Pi has a larger x-coordinate than all the points in Pj for any 1 ≤ i < j ≤ k̂;

• |P1| = |P2| = ... = |Pk̂| = O(n/k̂).

1

This can be done in O(n log k̂) time using a standard rank selection algorithm (see appendix).

Next, we process the subsets Pi in ascending order of i. As an invariant, after Pi has been
processed, we must have computed the maximal points of P1 ∪ ... ∪ Pi (observe that they must also
be maximal points of P). We achieve the purpose as follows. First, all the maximal points of P1

are found in O(t1 · |P1|) = O(t1 · n/k̂) time, where t1 is the number of those points. In general,
assuming that the invariant holds after Pi, we process Pi+1 as follows. Let p∗ be the highest of all
the maximal points in P1 ∪ ...∪ Pi. Scan Pi+1 to remove all the points dominated by p∗. Then, find
all the maximal points of the remaining Pi+1 in O(ti+1 · |Pi+1|) = O(ti+1 · n/k̂) time, where ti+1 is
the number of those points. Note that all these points must also be maximal points of P1 ∪ ...∪Pi+1.
Overall, we spend O((n/k̂)

∑k
i=1 ti) = O((n/k̂) · k) = O(n) time.

We thus have proved:

Lemma 1. If an upper bound k̂ of k is known, we can find all the maximal points in at most cn log k̂
time for some constant c.

2 The Final Algorithm

Lemma 1 is not immediately helpful: if we set k̂ to the trivial bound n, then the running time
O(n log k̂) is no better than O(n log n). Next, we will employ the lemma in a clever way to achieve
the desired O(n log k) bound.

The main idea is to ask the algorithm take a guess k′ of k. Initially, the algorithm sets k′ to 1
and, if k′ < k (i.e., k′ fails to be an upper bound of k, we increase our guess k′ and repeat. Crucially,
we can detect whether k′ < k in O(n log k′) time, thanks to Lemma 1. Specifically, we simply
run the algorithm of Section 1 by setting k̂ = k′, and keep monitoring the algorithm’s cost (this
means counting the number of unit-time atomic operations in the RAM model). If k′ ≥ k, then by
Lemma 1, the algorithm should terminate within cn log k′ time. Hence, as soon as the algorithm’s
cost reaches 1 + cn log k′, we can manually terminate the algorithm and declare that k′ < k.

Motivated by this, we start with k′ = 21. If k′ < k, we increase k′ to 22 and try again. In
general, if k′ = 22

i
is still smaller than k, the next k′ we try is min{22i+1

, n}. Clearly, this algorithm
will eventually find all the maximal points: it does so when k′ is at least k for the first time.

Suppose that eventually the algorithm stops at k′ = 22
i
for some integer i ≥ 0. The total running

time is:

O
(
n log 22

0
+ n log 22

1
+ n log 22

2
+ n log 22

3
+ ...+ n log 22

i
)

= O
(
n
(
20 + 21 + 22 + ...+ 2i

))
= O(n · 2i)

How large is 2i? The definition of i implies 22
i−1

< k, namely, 2i < 2 log2 k. We thus have obtained
an algorithm solving the maxima problem in O(n · 2i) = O(n log k) time.

Appendix: Multi-Rank Selection

Let S be a set of n real values. We say that a value v ∈ S has rank i if |{u ∈ S | u ≥ v}| = i (i.e.,
the largest value in S has rank 1, the second largest rank 2, ...). Given any rank r ∈ [1, n], the
element with rank r can be selected in linear time O(n) using a textbook rank selection algorithm.

2

In the multi-rank selection problem, suppose we are given k ranks r1, ..., rk in ascending order,
and need to find the k corresponding elements. This is do-able in O(n log k) time as follows. Without
loss of generality, let us assume that k is a power of 2. We first pick the median of rk/2 of {r1, ..., rk},
and find the element e with rank rk/2. Then, divide S into S1 and S2 such that (i) the former
includes all the elements of S at least e, and (ii) the latter includes the other elements of S. We
now recurse on two instances of the multi-rank selection problem: the first one on S1 with ranks
r1, ..., rk/2, and the second one on S2 with ranks r1+k/2 − k/2, r2+k/2 − k/2, ..., rk − k/2.

Let us analyze the running time. Define f(n, k) as the time of the above algorithm when k ranks
are to be computed from an input set of size n. If k = 1, we know f(n, k) = O(n). For k > 1, we
have:

f(n, k) = f(|S1|, k/2) + f(n− |S − 1|, k/2).

Solving the recurrence gives f(n, k) = O(n log k).

3

