Lecture Notes: An Output-Sensitive Algorithm for 2D Maxima

Yufei Tao
Department of Computer Science and Engineering

Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

January 22, 2024

In this lecture, we will revisit the mazima problem defined. Let us recall the relevant definitions.
Given two different points (z1,y1) and (x2,%2) in R?, we say that the former dominates the latter if
x1 > x9 and y; > yo (note that the two equalities cannot hold simultaneously because these are two
different points). Let P be a set of n points in R?. A point p € P is a mazimal point of P if p is not
dominated by any point in P. The goal is to report all the maximal points of P efficiently. In the
example of Figure 1, points 1, 2, 6, and 8 should be reported.

® 0

® Ut

Figure 1: An example

The problem can be easily solved in O(nlogn) time. Today, we will give an output-sensitive
algorithm that finishes in O(nlog k) time, where k is the number of maximal points. The technique
behind this algorithm can be deployed to obtain output-sensitive algorithms for other problems as
well, e.g., convex hull.

Before continuing, let us first observe a simple O(nk) time algorithm. First, find the rightmost
point p of P in O(n) time, which must be a maximal point. Then, in O(n) time remove from P (i)
all the points dominated by p and also (ii) p itself. Now, the rightmost point of (the remaining) P
is also guaranteed to be a maximal point. Repeat the above steps until P becomes empty.

1 Utilizing An Upper Bound of k

Let us first assume that, by magic, we know an upper bound k of k (e.g., k =n is a trivial upper
bound). We will design an algorithm whose efficiency depends on k.

First, divide P by x-coordinate into k subsets Py, ..., P; such that
e cvery point in F; has a larger x-coordinate than all the points in P; for any 1 <7 < j < l;:;

o |P|=|P|=..=|P|=0(n/k).

This can be done in O(nlog l;:) time using a standard rank selection algorithm (see appendix).

Next, we process the subsets P; in ascending order of 7. As an invariant, after P; has been
processed, we must have computed the maximal points of P; U ... U P; (observe that they must also
be maximal points of P). We achieve the purpose as follows. First, all the maximal points of P
are found in O(t; - |Py|) = O(t; - n/k) time, where ¢; is the number of those points. In general,
assuming that the invariant holds after P;, we process P,y as follows. Let p* be the highest of all
the maximal points in P; U...U P;. Scan P;;; to remove all the points dominated by p*. Then, find
all the maximal points of the remaining Piy1 in O(tir1 - |Pip1]) = O(tip1 - n/k) time, where t;,; is
the number of those points. Note that all these points must also be maximal points of P U...U Pj41.
Overall, we spend O((n/k) Z?Zl t;)) = O((n/k) - k) = O(n) time.

We thus have proved:

Lemma 1. If an upper bound k of k is known, we can find all the mazimal points in at most cn logl%
time for some constant c.

2 The Final Algorithm

Lemma 1 is not immediately helpful: if we set k to the trivial bound n, then the running time
O(nlogk) is no better than O(nlogn). Next, we will employ the lemma in a clever way to achieve
the desired O(nlogk) bound.

The main idea is to ask the algorithm take a guess k’ of k. Initially, the algorithm sets k' to 1
and, if ¥ < k (i.e., k' fails to be an upper bound of k, we increase our guess k' and repeat. Crucially,
we can detect whether k' < k in O(nlogk’) time, thanks to Lemma 1. Specifically, we simply
run the algorithm of Section 1 by setting k=K , and keep monitoring the algorithm’s cost (this
means counting the number of unit-time atomic operations in the RAM model). If ¥’ > k, then by
Lemma 1, the algorithm should terminate within cnlog &’ time. Hence, as soon as the algorithm’s
cost reaches 1 + cnlogk’, we can manually terminate the algorithm and declare that k' < k.

Motivated by this, we start with &' = 2. If ¥’ < k, we increase k' to 2% and try again. In
general, if k' = 22" is still smaller than k, the next k' we try is min{?QHl,n}. Clearly, this algorithm
will eventually find all the maximal points: it does so when &’ is at least k for the first time.

Suppose that eventually the algorithm stops at k' = 22" for some integer ¢ > 0. The total running
time is:
0] <nlog 22’ 4 nlog 22! 4 nlog 2% 4 nlog 22 4+ 4 nlog 22i>
= O(n(2"+2"+22+...+2)
= O(n-2Y

How large is 2°? The definition of i implies 227! < k, namely, 2¢ < 2log, k. We thus have obtained
an algorithm solving the maxima problem in O(n - 2!) = O(nlogk) time.

Appendix: Multi-Rank Selection

Let S be a set of n real values. We say that a value v € S has rank i if |[{u € S |u>v}| =1 (ie.,
the largest value in S has rank 1, the second largest rank 2, ...). Given any rank r € [1,n], the
element with rank r can be selected in linear time O(n) using a textbook rank selection algorithm.

In the multi-rank selection problem, suppose we are given k ranks 71, ..., 7, in ascending order,
and need to find the k corresponding elements. This is do-able in O(nlog k) time as follows. Without
loss of generality, let us assume that k is a power of 2. We first pick the median of ry, /5 of {riy ..o, },
and find the element e with rank 7;,/5. Then, divide S into S; and Sz such that (i) the former
includes all the elements of S at least e, and (ii) the latter includes the other elements of S. We
now recurse on two instances of the multi-rank selection problem: the first one on S; with ranks
T1,..-, T2, and the second one on Sy with ranks ry /9 — k/2,7041/0 — k/2,...;r — k/2.

Let us analyze the running time. Define f(n, k) as the time of the above algorithm when k ranks
are to be computed from an input set of size n. If k = 1, we know f(n,k) = O(n). For k > 1, we
have:

f(n7 k) = f(’S1|7k/2) + f(n_ |S_ 1’7k/2)‘

Solving the recurrence gives f(n, k) = O(nlogk).

