Lecture Notes: An Output-Sensitive Algorithm for 2D Maxima

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

January 22, 2024

In this lecture, we will revisit the maxima problem defined. Let us recall the relevant definitions. Given two different points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2}, we say that the former dominates the latter if $x_{1} \geq x_{2}$ and $y_{1} \geq y_{2}$ (note that the two equalities cannot hold simultaneously because these are two different points). Let P be a set of n points in \mathbb{R}^{2}. A point $p \in P$ is a maximal point of P if p is not dominated by any point in P. The goal is to report all the maximal points of P efficiently. In the example of Figure 1, points 1, 2, 6, and 8 should be reported.

Figure 1: An example

The problem can be easily solved in $O(n \log n)$ time. Today, we will give an output-sensitive algorithm that finishes in $O(n \log k)$ time, where k is the number of maximal points. The technique behind this algorithm can be deployed to obtain output-sensitive algorithms for other problems as well, e.g., convex hull.

Before continuing, let us first observe a simple $O(n k)$ time algorithm. First, find the rightmost point p of P in $O(n)$ time, which must be a maximal point. Then, in $O(n)$ time remove from P (i) all the points dominated by p and also (ii) p itself. Now, the rightmost point of (the remaining) P is also guaranteed to be a maximal point. Repeat the above steps until P becomes empty.

1 Utilizing An Upper Bound of \boldsymbol{k}

Let us first assume that, by magic, we know an upper bound \hat{k} of k (e.g., $\hat{k}=n$ is a trivial upper bound). We will design an algorithm whose efficiency depends on \hat{k}.

First, divide P by x-coordinate into \hat{k} subsets $P_{1}, \ldots, P_{\hat{k}}$ such that

- every point in P_{i} has a larger x-coordinate than all the points in P_{j} for any $1 \leq i<j \leq \hat{k}$;
- $\left|P_{1}\right|=\left|P_{2}\right|=\ldots=\left|P_{\hat{k}}\right|=O(n / \hat{k})$.

This can be done in $O(n \log \hat{k})$ time using a standard rank selection algorithm (see appendix).
Next, we process the subsets P_{i} in ascending order of i. As an invariant, after P_{i} has been processed, we must have computed the maximal points of $P_{1} \cup \ldots \cup P_{i}$ (observe that they must also be maximal points of P). We achieve the purpose as follows. First, all the maximal points of P_{1} are found in $O\left(t_{1} \cdot\left|P_{1}\right|\right)=O\left(t_{1} \cdot n / \hat{k}\right)$ time, where t_{1} is the number of those points. In general, assuming that the invariant holds after P_{i}, we process P_{i+1} as follows. Let p^{*} be the highest of all the maximal points in $P_{1} \cup \ldots \cup P_{i}$. Scan P_{i+1} to remove all the points dominated by p^{*}. Then, find all the maximal points of the remaining P_{i+1} in $O\left(t_{i+1} \cdot\left|P_{i+1}\right|\right)=O\left(t_{i+1} \cdot n / \hat{k}\right)$ time, where t_{i+1} is the number of those points. Note that all these points must also be maximal points of $P_{1} \cup \ldots \cup P_{i+1}$. Overall, we spend $O\left((n / \hat{k}) \sum_{i=1}^{k} t_{i}\right)=O((n / \hat{k}) \cdot k)=O(n)$ time.

We thus have proved:
Lemma 1. If an upper bound \hat{k} of k is known, we can find all the maximal points in at most cn $\log \hat{k}$ time for some constant c.

2 The Final Algorithm

Lemma 1 is not immediately helpful: if we set \hat{k} to the trivial bound n, then the running time $O(n \log \hat{k})$ is no better than $O(n \log n)$. Next, we will employ the lemma in a clever way to achieve the desired $O(n \log k)$ bound.

The main idea is to ask the algorithm take a guess k^{\prime} of k. Initially, the algorithm sets k^{\prime} to 1 and, if $k^{\prime}<k$ (i.e., k^{\prime} fails to be an upper bound of k, we increase our guess k^{\prime} and repeat. Crucially, we can detect whether $k^{\prime}<k$ in $O\left(n \log k^{\prime}\right)$ time, thanks to Lemma 1. Specifically, we simply run the algorithm of Section 1 by setting $\hat{k}=k^{\prime}$, and keep monitoring the algorithm's cost (this means counting the number of unit-time atomic operations in the RAM model). If $k^{\prime} \geq k$, then by Lemma 1, the algorithm should terminate within $c n \log k^{\prime}$ time. Hence, as soon as the algorithm's cost reaches $1+c n \log k^{\prime}$, we can manually terminate the algorithm and declare that $k^{\prime}<k$.

Motivated by this, we start with $k^{\prime}=2^{1}$. If $k^{\prime}<k$, we increase k^{\prime} to 2^{2} and try again. In general, if $k^{\prime}=2^{2^{i}}$ is still smaller than k, the next k^{\prime} we try is $\min \left\{2^{2^{i+1}}, n\right\}$. Clearly, this algorithm will eventually find all the maximal points: it does so when k^{\prime} is at least k for the first time.

Suppose that eventually the algorithm stops at $k^{\prime}=2^{2^{i}}$ for some integer $i \geq 0$. The total running time is:

$$
\begin{aligned}
& O\left(n \log 2^{2^{0}}+n \log 2^{2^{1}}+n \log 2^{2^{2}}+n \log 2^{2^{3}}+\ldots+n \log 2^{2^{i}}\right) \\
= & O\left(n\left(2^{0}+2^{1}+2^{2}+\ldots+2^{i}\right)\right) \\
= & O\left(n \cdot 2^{i}\right)
\end{aligned}
$$

How large is 2^{i} ? The definition of i implies $2^{2^{i-1}}<k$, namely, $2^{i}<2 \log _{2} k$. We thus have obtained an algorithm solving the maxima problem in $O\left(n \cdot 2^{i}\right)=O(n \log k)$ time.

Appendix: Multi-Rank Selection

Let S be a set of n real values. We say that a value $v \in S$ has rank i if $|\{u \in S \mid u \geq v\}|=i$ (i.e., the largest value in S has rank 1 , the second largest rank $2, \ldots$). Given any rank $r \in[1, n]$, the element with rank r can be selected in linear time $O(n)$ using a textbook rank selection algorithm.

In the multi-rank selection problem, suppose we are given k ranks r_{1}, \ldots, r_{k} in ascending order, and need to find the k corresponding elements. This is do-able in $O(n \log k)$ time as follows. Without loss of generality, let us assume that k is a power of 2 . We first pick the median of $r_{k / 2}$ of $\left\{r_{1}, \ldots, r_{k}\right\}$, and find the element e with rank $r_{k / 2}$. Then, divide S into S_{1} and S_{2} such that (i) the former includes all the elements of S at least e, and (ii) the latter includes the other elements of S. We now recurse on two instances of the multi-rank selection problem: the first one on S_{1} with ranks $r_{1}, \ldots, r_{k / 2}$, and the second one on S_{2} with ranks $r_{1+k / 2}-k / 2, r_{2+k / 2}-k / 2, \ldots, r_{k}-k / 2$.

Let us analyze the running time. Define $f(n, k)$ as the time of the above algorithm when k ranks are to be computed from an input set of size n. If $k=1$, we know $f(n, k)=O(n)$. For $k>1$, we have:

$$
f(n, k)=f\left(\left|S_{1}\right|, k / 2\right)+f(n-|S-1|, k / 2)
$$

Solving the recurrence gives $f(n, k)=O(n \log k)$.

