Dimensionality Reduction 2: Rectangle-Point Containment

Yufei Tao

CSE Dept
Chinese University of Hong Kong

Let R be a set of axis-parallel rectangles and P be a set of points, all in \mathbb{R}^{d}, where d is a fixed constant. We want to report all pairs of $(r, p) \in R \times P$ such that r contains p.

A 2D example

We will show how to solve the problem in O (n polylog $n+k$) where $n=|R|+|P|$ and k is the number of pairs reported.

1D

When $d=1, R$ is a set of intervals and P a set of points, both in \mathbb{R}.

It is easy to settle the problem in $O(n \log n+k)$ time.

Assumption: R does not contain any rectangle of the form $(-\infty, \infty) \times\left[y_{1}, y_{2}\right]$ (i.e., a horizontal stripe).
Removing the assumption will be left to you (it is easy).

Every rectangle in R defines at most two finite x -coordinates, and each point in P defines one x-coordinate. Call those coordinates the input x-coordinates.

A left-open or right-open rectangle defines only one input x-coordinate.

Input x-coordinates: $1,2, \ldots, 16$.

2D

Divide the input x-coordinates in half with a vertical line ℓ.

We will assume that such a line ℓ exists. Handling the opposite scenario is left to you.

2D

The line ℓ creates two sub-problems.

Note that each sub-problem can contain left-open or right-open rectangles. No new input x-coordinates are created.

Divide the right sub-problem into two "sub-sub-problems":

Issue: In the first sub-sub-problem, r_{2} and r_{3} define no input x-coordinates. Thus, we cannot solve the sub-sub-problem recursively (think: why).

2D

Dealing with the issue: solve a 1D instance of the problem on the y-dimension and get rid of such rectangles.

The 2D Algorithm

1. Let $R_{\text {span }}$ be the set of rectangles that do not define input x-coordinates (they span the current data space in x-dimension).
2. Solve a 1D instance on R^{\prime} and P^{\prime} where R^{\prime} and P^{\prime} are obtained by projecting $R_{\text {span }}$ and P onto the y-axis, respectively.
3. Remove $R_{\text {span }}$ from R.
4. Divide the input x-coordinates equally with a vertical line ℓ.
5. Let R_{1} (or R_{2}) be the set of rectangles in R that intersect with the left (or right, resp.) side of ℓ. Let P_{1} (or P_{2}) be the set of points in P that fall on the left (or right, resp.) side of ℓ.
6. Solve the left sub-problem with inputs R_{1}, P_{1} and the right sub-problem with inputs R_{2}, P_{2}.

2D Analysis

Let $f(m)$ be the running time of our algorithm when there are m input x-coordinates.

$$
f(m) \leq 2 \cdot f(m / 2)+2 \cdot g(m)
$$

where $g(m)$ is the cost of solving a 1D instance of size m.

$$
f(m) \leq 2 \cdot f(m / 2)+2 \cdot g(m)
$$

We know that $g(m)=O\left(m \log m+k^{\prime}\right)$ (where k^{\prime} is the number of pairs reported by the 1D instance). Solving the recurrence gives $f(m)=O\left(m \log ^{2} m+k\right)$.
As $m \leq 2 n$, we now have an algorithm of $O\left(n \log ^{2} n+k\right)$ time.

Remark: In this week's exercises, you will be guided to improve the running time to $O(n \log n+k)$.

d-Dimensional

In general, we can use a ($d-1$)-dimensional algorithm to solve the d-dimensional problem. It will be left as an exercise to design a d-dimensional algorithm in O (n polylog $n+k$) time.

