Lecture Notes: Computation Model

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

Computer science is a subject under mathematics. From your undergraduate study, you should have learned that, before you can even start to analyze the "running time" of an algorithm, you need to first define a computation model properly.

The RAM Model. This is perhaps the model you are most familiar with. In the Random Access Machine (RAM) model, the *memory* is an infinite sequence of *cells*, where each cell is a sequence of w bits for some integer w, and is indexed by an integer *address*. Each cell is also called a *word*; and accordingly, the parameter w is often referred to as the *word length*. The *CPU*, on the other hand, has a (constant) number of cells, each of which is called a *register*. The CPU can perform only the following *atomic* operations:

- Set a register to some constant, or to the content of another register.
- Compare two numbers in registers.
- Perform $+, -, \cdot, /$ on two numbers in registers.
- When an address x has been stored in a register, read the content of the memory cell at address x into a register, or conversely, write the content of a register into the memory cell.

The *time* (or *cost*) of an algorithm is measured by the number of atomic operations it performs. Note that the time is an integer.

A remark is in order about the word length w: it needs to be long enough to encode all the memory addresses! For example, if your algorithm uses n^2 memory cells for some integer n, then the word length will need to have at least $2 \log_2 n$ bits. Unless otherwise stated, we consider that $w = \Theta(\log n)$, where n is the "input size", whose meaning will be clearly defined in every problem to be discussed in this course.

The Real-RAM Model. In the above model, the (memory/register) cells can store only integers. Next, we will slightly modify the model to deal with real values.

Note that simply "allowing" each cell to store a real value does not give a satisfactory model because it destroys the underlying rigor. For example, how many bits would you use for a real value? In fact, even if the number of bits *were* infinite, still we would not be able to represent all the real values even in a short interval like [0, 1] — the set of real values in the interval is *uncountably* infinite!

We can alleviate this issue by introducing the concept of *black box*. We still allow a (memory/register) cell c to store a real value x, but in this case, the algorithm is forbidden to look *inside* c, that is, the algorithm has no control over the representation of x. In other words, c is now a black box, holding the value x precisely (by magic).

A black box remains as a black box after computation. For example, suppose that two registers are both storing $\sqrt{2}$. We can calculate their product 2, but the product must still be understood

as a real value (even though it is an integer). This is similar to the requirement in C++ that the product of two float numbers remains as a float number.

Now we can formally extend the RAM model by introducing some additional rules:

- Each cell can store either an integer or a real value.
- For operations +, -, ·, and /, if one of the operand numbers is a real value, the result is a real value.
- We allow another atomic operation called the *floor*. If a cell contains a real value x, the operation $\lfloor x \rfloor$ converts the cell into an integer storing $\lfloor x \rfloor$, provided that $x \in [0, 2^w)$ (this condition ensures that |x| can be stored in a word).
- Every cell in the input to the algorithm must be in the range $[0, 2^w)$.

We will call the new model the *real RAM* model.

We must be careful not to abuse the power of real-value computation because research [1] has shown that an unconstrained real RAM model can solve NP-hard problems in polynomial time. To avoid such oddity, we will adhere to the *constant multiplication-depth* requirement. To explain the condition, let us consider any real value x that is computed during an algorithm's execution. The computation of x can be modeled as a tree T(x). Specifically, each leaf of T(x) is either a constant or a real value in the input to the algorithm. Every internal node u of T(x) is labeled with an operation $op(u) \in \{+, -, \cdot, /, \lfloor \rfloor\}$. Each operand required by op(u) is stored at a child of u in T(x), and the operation's output is stored at u. The value of x is stored at the root of T(x). The constant multiplication-depth requirement states:

Any root-to-leaf path of T(x) can contain only a constant number of multiplications.

Randomness. All the atomic operations discussed so far are *deterministic*. As a result, our models currently do not permit *randomization*, which is essential to apply to certain algorithmic techniques (such as hashing).

To fix the issue, we introduce one more atomic operation for the RAM and real-RAM models. This operation, named RAND, takes two non-negative integer parameters x and y, and returns an integer chosen uniformly at random from [x, y]. In other words, every integer in [x, y] can be returned with probability 1/(y - x + 1). The values of x, y should be in $[0, 2^w - 1]$ because they each need to be encoded in a word.

Math Conventions. We will assume that you are familiar with the notations of $O(.), \Omega(.), \Theta(.), o(.), and \omega(.)$. The notation $\tilde{O}(f(n_1, n_2, ..., n_x))$ represents the class of functions that are $O(f(n_1, n_2, ..., n_x) \cdot \text{polylog}(n_1 + n_2 + ... + n_x))$, namely, $\tilde{O}(.)$ hides a polylogarithmic factor. The symbol \mathbb{R} denotes the set of real values.

References

 A. Schonhage. On the power of random access machines. In Proceedings of International Colloquium on Automata, Languages and Programming (ICALP), volume 71, pages 520–529, 1979.