
Lecture Notes: Computation Model

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

Computer science is a subject under mathematics. From your undergraduate study, you should
have learned that, before you can even start to analyze the “running time” of an algorithm, you
need to first define a computation model properly.

The RAM Model. This is perhaps the model you are most familiar with. In the Random Access
Machine (RAM) model, the memory is an infinite sequence of cells, where each cell is a sequence of
w bits for some integer w, and is indexed by an integer address. Each cell is also called a word; and
accordingly, the parameter w is often referred to as the word length. The CPU, on the other hand,
has a (constant) number of cells, each of which is called a register. The CPU can perform only the
following atomic operations:

• Set a register to some constant, or to the content of another register.

• Compare two numbers in registers.

• Perform +,−, ·, / on two numbers in registers.

• When an address x has been stored in a register, read the content of the memory cell at
address x into a register, or conversely, write the content of a register into the memory cell.

The time (or cost) of an algorithm is measured by the number of atomic operations it performs.
Note that the time is an integer.

A remark is in order about the word length w: it needs to be long enough to encode all the
memory addresses! For example, if your algorithm uses n2 memory cells for some integer n, then
the word length will need to have at least 2 log2 n bits. Unless otherwise stated, we consider that
w = Θ(log n), where n is the “input size”, whose meaning will be clearly defined in every problem
to be discussed in this course.

The Real-RAM Model. In the above model, the (memory/register) cells can store only integers.
Next, we will slightly modify the model to deal with real values.

Note that simply “allowing” each cell to store a real value does not give a satisfactory model
because it destroys the underlying rigor. For example, how many bits would you use for a real
value? In fact, even if the number of bits were infinite, still we would not be able to represent all the
real values even in a short interval like [0, 1] — the set of real values in the interval is uncountably
infinite!

We can alleviate this issue by introducing the concept of black box. We still allow a (mem-
ory/register) cell c to store a real value x, but in this case, the algorithm is forbidden to look inside
c, that is, the algorithm has no control over the representation of x. In other words, c is now a black
box, holding the value x precisely (by magic).

A black box remains as a black box after computation. For example, suppose that two registers
are both storing

√
2. We can calculate their product 2, but the product must still be understood

1



as a real value (even though it is an integer). This is similar to the requirement in C++ that the
product of two float numbers remains as a float number.

Now we can formally extend the RAM model by introducing some additional rules:

• Each cell can store either an integer or a real value.

• For operations +, −, ·, and /, if one of the operand numbers is a real value, the result is a
real value.

• We allow another atomic operation called the floor. If a cell contains a real value x, the
operation ⌊x⌋ converts the cell into an integer storing ⌊x⌋, provided that x ∈ [0, 2w) (this
condition ensures that ⌊x⌋ can be stored in a word).

• Every cell in the input to the algorithm must be in the range [0, 2w).

We will call the new model the real RAM model.

We must be careful not to abuse the power of real-value computation because research [1] has
shown that an unconstrained real RAM model can solve NP-hard problems in polynomial time. To
avoid such oddity, we will adhere to the constant multiplication-depth requirement. To explain the
condition, let us consider any real value x that is computed during an algorithm’s execution. The
computation of x can be modeled as a tree T (x). Specifically, each leaf of T (x) is either a constant
or a real value in the input to the algorithm. Every internal node u of T (x) is labeled with an
operation op(u) ∈ {+,−, ·, /, ⌊⌋}. Each operand required by op(u) is stored at a child of u in T (x),
and the operation’s output is stored at u. The value of x is stored at the root of T (x). The constant
multiplication-depth requirement states:

Any root-to-leaf path of T (x) can contain only a constant number of multiplications.

Randomness. All the atomic operations discussed so far are deterministic. As a result, our models
currently do not permit randomization, which is essential to apply to certain algorithmic techniques
(such as hashing).

To fix the issue, we introduce one more atomic operation for the RAM and real-RAM models.
This operation, named RAND , takes two non-negative integer parameters x and y, and returns
an integer chosen uniformly at random from [x, y]. In other words, every integer in [x, y] can be
returned with probability 1/(y − x+ 1). The values of x, y should be in [0, 2w − 1] because they
each need to be encoded in a word.

Math Conventions. We will assume that you are familiar with the notations of O(.),Ω(.),
Θ(.), o(.), and ω(.). The notation Õ(f(n1, n2, ..., nx)) represents the class of functions that are
O(f(n1, n2, ..., nx) · polylog(n1 + n2 + ...+ nx)), namely, Õ(.) hides a polylogarithmic factor. The
symbol R denotes the set of real values.

References

[1] A. Schonhage. On the power of random access machines. In Proceedings of International
Colloquium on Automata, Languages and Programming (ICALP), volume 71, pages 520–529,
1979.

2


