Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1*. Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an affine transformation. Given a set P of points in \mathbb{R}^{d}, define by $T(P)=\{T(p) \mid p \in P\}$, namely, $T(P)$ is the set of points obtained by applying the affine transformation T to P. Prove: if $R \subseteq P$ is an ϵ-kernel of P, then $T(R)$ is an ϵ-kernel of $T(P)$.

Hint: Given a directional vector \boldsymbol{u}, the width of P at direction \boldsymbol{u} can be calculated as

$$
W_{\boldsymbol{u}}(P)=\left(\max _{\boldsymbol{p} \in P} \boldsymbol{u} \cdot \boldsymbol{p}\right)-\left(\min _{\boldsymbol{p} \in P} \boldsymbol{u} \cdot \boldsymbol{p}\right)
$$

where $\boldsymbol{u} \cdot \boldsymbol{p}$ is the dot product of vectors \boldsymbol{u} and \boldsymbol{p}. To prove the claim, use your knowledge from linear algebra to figure out how a dot product would change under an affine transformation. Recall that an affine transformation is: $T(p)=\mathbf{A} \boldsymbol{p}+\boldsymbol{b}$ where \mathbf{A} is a $d \times d$ matrix, and both \boldsymbol{p} and \boldsymbol{b} are $d \times 1$ vectors.

Problem 2* ((1- ϵ)-Approximate Top-1 Search). Let P be a set of points in \mathbb{R}^{d} where d is a constant, and each point has a positive coordinate on every dimension. We will view each point $p \in P$ as a d-dimensional vector $\boldsymbol{p}=(p[1], p[2], \ldots, p[d])$ where $p[i](1 \leq i \leq d)$ is the i-th coordinate of p. Given a directional vector \boldsymbol{u} where $u[i] \geq 0$ for each $i \in[d]$, define

$$
\operatorname{top}_{\boldsymbol{u}}(P)=\max _{\boldsymbol{p} \in P} \boldsymbol{u} \cdot \boldsymbol{p}
$$

where $\boldsymbol{u} \cdot \boldsymbol{p}$ is the dot product of vectors \boldsymbol{u} and \boldsymbol{p}. Given $0<\epsilon<1$, describe an algorithm that computes in $O(n)$ expected time a subset $R \in P$ such that

- $|R|=O\left(1 / \epsilon^{d}\right)$, and
- for any directional vector \boldsymbol{u}, it holds that $\operatorname{top}_{\boldsymbol{u}}(R) \geq(1-\epsilon) \cdot \operatorname{top}_{\boldsymbol{u}}(P)$.

Hint: Add the origin to P.
Problem 3. Prove the order-reversal property of dual transformation.
Problem 4. Prove the intersection preserving property of dual transformation.
Problem 5. Let ℓ_{1} and ℓ_{2} be two parallel non-vertical lines in the primal space \mathbb{R}^{2}. Prove: their vertical distance equals the distance of points ℓ_{1}^{*} and ℓ_{2}^{*} in the dual space.

Problem 6. Let A, B, C, and D be four points in the primal space \mathbb{R}^{2} that have distinct x coordinates. Suppose that triangle $A B C$ has an area smaller than $A B D$. Let ℓ be the line passing points A and B in the primal space. Prove: in the dual space, point ℓ^{*} has a smaller vertical distance to line C^{*} than to line D^{*}.

Note: The vertical distance from a point (a, b) to a line $y=c_{1} x-c_{2}$ equals $\left|b-\left(c_{1} \cdot a-c_{2}\right)\right|$.

