Exercises for CSCI5010

Prepared by Yufei Tao

Let P be a set of n points in \mathbb{R}^{d}, where d is a constant. Denote by T the quadtree of P. In the lecture, we proved that our s-WSPD algorithm computes an s-WSPD of P with $O\left(s^{d} \cdot n \cdot h\right)$ pairs, where h is the height of T. Now, apply the same algorithm on the compressed quadtree tree $T_{\text {com }}$ of P. In this exercise, you will prove that the algorithm produces an s-WSPD of $O\left(s^{d} \cdot n\right)$ pairs.

We will apply the same charging strategy as introduced in the lecture. Every time the algorithm generates $\{u, v\}$ from $\{w, v\}$ by splitting w (i.e., w is the parent of u in $T_{\text {com }}$), we charge the pair $\{u, v\}$ on w.

Solve the following problems.
Problem 1. For each node z in $T_{\text {com }}$, we use $\operatorname{level}(z)$ to denote the level of z in the original quadtree T. Prove: $\operatorname{level}(v) \geq \operatorname{level}(w) \geq \operatorname{level}(x)$.

Remark: Recall that if a node is at level ℓ of T, the node corresponds to a box with side length $1 / 2^{\ell}$ on each dimension. Essentially, you need to prove that the box of v is no larger than that of w, which in turn is no larger than that of x.

Hint: Our algorithm always splits the "larger" node in a pair.
Problem 2. Fix a node w in $T_{\text {com }}$ and a child u of w. Prove: there are $O\left(s^{d}\right)$ nodes v in $T_{\text {com }}$ satisfying (i) level $(w)=\operatorname{level}(v)$ and (ii) w is charged for the pair $\{u, v\}$.

Problem 3. Fix a node w in $T_{\text {com }}$ and a child u of w. Prove: there are $O\left(s^{d}\right)$ nodes v in $T_{\text {com }}$ satisfying

- $\operatorname{level}(w)=\operatorname{level}(x)$ where x is the parent of v in $T_{\text {com }}$ and
- w is charged for the pair $\{u, v\}$.

Problem 4. Fix a node w in $T_{\text {com }}$ and a child u of w. Let S be the collection of nodes v of $T_{\text {com }}$ satisfying

- level $(v)>\operatorname{level}(w)>\operatorname{level}(x)$ where x is the parent of v in $T_{\text {com }}$ and
- w is charged for the pair $\{u, v\}$.

Consider any node $v \in S$ and let x be the parent of v in $T_{\text {com }}$. Identify the node in T (the original quadtree) at level level (w) on the path from x to v in T. We will refer to \hat{v} the anchor node of v with respect to w. Note that \hat{v} has only a single child and does not exist in $T_{\text {com }}$ (i.e., \hat{v} is removed by compression).

Prove: the nodes in S have distinct anchor nodes with respect to w.
Hint: Which nodes on the path from x to v in T have only one child?
Problem 5. Fix a node w in $T_{\text {com }}$ and a child u of w. Let S be the collection of nodes v of $T_{\text {com }}$ satisfying

- $\operatorname{level}(v)>\operatorname{level}(w)>\operatorname{level}(x)$ where x is the parent of v in $T_{\text {com }}$ and
- w is charged for the pair $\{u, v\}$.

Prove: $|S|=O\left(s^{d}\right)$.
Hint: Apply the Packing Lemma to bound the number of anchor nodes.
Problem 6. Prove: Each node w of $T_{\text {com }}$ can be charged only $O\left(s^{d}\right)$ times.

