Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1. Let P be a set of n points in \mathbb{R}^{d}. Define $d_{\max }$ as the maximum distance between two points in P, namely, $d_{\text {max }}=\max _{p, q \in P} \operatorname{dist}(p, q)$, where $\operatorname{dist}(p, q)$ is the Euclidean distance between p and q. Describe an $O(n)$-time algorithm to find a d-dimensional box such that:

- the box has the same side length on each dimension, and the side length is $\Theta\left(d_{\max }\right)$;
- the box covers all the points in P.

Problem 2. Let P be a set of n points in \mathbb{R}^{d}. Define $d_{\max }$ as the maximum distance between two points in P, namely, $d_{\max }=\max _{p, q \in P} \operatorname{dist}(p, q)$. Define $d_{\min }$ as the minimum distance between two distinct points in P, namely, $d_{\text {min }}=\min _{\text {distinct } p, q \in P} \operatorname{dist}(p, q)$. Describe how to build a quadtree on P in $O\left(n \cdot \log \frac{d_{\text {max }}}{d_{\text {min }}}\right)$ time.

Problem 3. Let P be a set of points in \mathbb{R}^{d}. Suppose that we have constructed an s-well separated point decomposition for $P:\left\{\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$. Let $\{p, q\}$ be a closest pair of P (i.e., $\operatorname{dist}(p, q)=d_{\text {min }}$, where $d_{\text {min }}$ is as defined in Problem 2). Prove: if $s>2$, then there exists an $i \in[1, m]$ such that A_{i} contains only p, and B_{i} contains only q.

Hint 1: Recall that there must exist an $i \in[1, m]$ such that $p \in A_{i}$ and $q \in B_{i}$.
Hint 2: If you do not want to think, read Lect 18 of Prof. Mount's notes.
Problem 4*. Let P be a set of points in \mathbb{R}^{d}. Suppose that we have constructed an s-well separated point decomposition for $P:\left\{\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$. For each $i \in[1, m]$, let a_{i} be an arbitrary point in A_{i}, and b_{i} be an arbitrary point in B_{i}. Let us construct an undirected graph $G=(V, E)$ as follows:

- $V=P$, namely, each vertex of V is a point in P.
- For each $i \in[1, m]$, add to E an edge $\left\{a_{i}, b_{i}\right\}$.

Prove: If $s>2$, then G must be connected (i.e., for any two points $p, q \in P, G$ has a path from p to q).

Hint: Imagine listing all distinct pairs of the points in P in ascending order of distance. Apply induction on the sorted list.

