Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1 (Top-1 Search). Let P be a set of n points in \mathbb{R}^2 . Let x_p (resp., y_p) denote the x-(resp., y-) coordinate of p. Define a *preference function* to be a function $f : \mathbb{R}^2 \to \mathbb{R}$ of the form: $f(p) = c_1 \cdot x_p + c_2 \cdot y_p$, where c_1 and c_2 are real-valued constants. Given a preference function f, a top-1 query returns a point $p \in P$ that maximizes f(p) among all the points in P.

Design a structure of O(n) space that answers a query in $O(\log n)$ time. Describe how to construct the structure in $O(n \log n)$ time.

Problem 2 (Merging Convex Hulls). Let P_1 and P_2 be two sets of points. Given the convex hulls of P_1 and P_2 , describe an algorithm to compute the convex hull of $P_1 \cup P_2$ in O(n) time, where $n = |P_1| + |P_2|$.

Remark: This implies an $O(n \log n)$ time divide-and-conquer algorithm for computing the convex hull of n points.

Problem 3. Prove: every polygon (which may be concave) with $n \ge 4$ vertices has at least one diagonal.

Problem 4. Consider the following algorithm for triangulating a polygon G:

- 1. add diagonals to break G into non-overlapping polygons $G_1, G_2, ..., G_t$ without split vertices
- 2. for i = 1 to t do
- 3. add diagonals to break G_i into non-overlapping polygons without merge vertices
- 4. for every polygon G' obtained at Line 3 do
- 5. triangulate G' using an x-monotone algorithm

Prove: the above algorithm runs in $O(n \log n)$ time where n is the number of vertices in G.

Problem 5* (Point in Polygon). Let G be a convex polygon of n vertices, which are given to you in clockwise order. Given an arbitrary point $q \in \mathbb{R}^2$, describe an algorithm to decide whether q is inside or outside G in $O(\log n)$ time.

Problem 6* (Textbook Exercise 3.11). Given a polygon G of n vertices, decide in O(n) time whether G can be made x-monotone by rotating the coordinate system at the origin.

Problem 7* (Reading Exercise). Let G be a polygon with n vertices. Two points p and q in the polygon are visible to each other if the the segment \overline{pq} is fully contained by the polygon. Given a set S of vertices of G, we say that S guards G if every point inside G is visible to at least one vertex in G. Give an $O(n \log n)$ time algorithm to find a set S of size at most n/3 to guard G.

Hint: Read Section 3.1 of the textbook.