Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1 (Top-1 Search). Let P be a set of n points in \mathbb{R}^{2}. Let x_{p} (resp., y_{p}) denote the x (resp., y-) coordinate of p. Define a preference function to be a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the form: $f(p)=c_{1} \cdot x_{p}+c_{2} \cdot y_{p}$, where c_{1} and c_{2} are real-valued constants. Given a preference function f, a top-1 query returns a point $p \in P$ that maximizes $f(p)$ among all the points in P.

Design a structure of $O(n)$ space that answers a query in $O(\log n)$ time. Describe how to construct the structure in $O(n \log n)$ time.

Problem 2 (Merging Convex Hulls). Let P_{1} and P_{2} be two sets of points. Given the convex hulls of P_{1} and P_{2}, describe an algorithm to compute the convex hull of $P_{1} \cup P_{2}$ in $O(n)$ time, where $n=\left|P_{1}\right|+\left|P_{2}\right|$.

Remark: This implies an $O(n \log n)$ time divide-and-conquer algorithm for computing the convex hull of n points.

Problem 3. Prove: every polygon (which may be concave) with $n \geq 4$ vertices has at least one diagonal.

Problem 4. Consider the following algorithm for triangulating a polygon G :

1. add diagonals to break G into non-overlapping polygons $G_{1}, G_{2}, \ldots, G_{t}$ without split vertices
2. for $i=1$ to t do
3. add diagonals to break G_{i} into non-overlapping polygons without merge vertices
4. for every polygon G^{\prime} obtained at Line 3 do
5. triangulate G^{\prime} using an x-monotone algorithm

Prove: the above algorithm runs in $O(n \log n)$ time where n is the number of vertices in G.
Problem 5* (Point in Polygon). Let G be a convex polygon of n vertices, which are given to you in clockwise order. Given an arbitrary point $q \in \mathbb{R}^{2}$, describe an algorithm to decide whether q is inside or outside G in $O(\log n)$ time.

Problem 6* (Textbook Exercise 3.11). Given a polygon G of n vertices, decide in $O(n)$ time whether G can be made x-monotone by rotating the coordinate system at the origin.

Problem 7* (Reading Exercise). Let G be a polygon with n vertices. Two points p and q in the polygon are visible to each other if the the segment $\overline{p q}$ is fully contained by the polygon. Given a set S of vertices of G, we say that S guards G if every point inside G is visible to at least one vertex in G. Give an $O(n \log n)$ time algorithm to find a set S of size at most $n / 3$ to guard G.

Hint: Read Section 3.1 of the textbook.

