Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1. Let D be a point outside $\odot A B C$ (circumcircle of triangle $A B C$) such that points B and D fall on different sides of the line passing through segment $\overline{A C}$. Then, $\odot A C D$ covers the territory of arc $\widehat{A C}$ inside $\odot A B C$ (the shadow region in the figure below).

Hint: Pick any point E on the $\operatorname{arc} \widehat{A C}(E \neq A$ and $E \neq C)$. Prove that the angle $\angle A E C>$ $\angle A D C$.

Problem 2 (reading exercise). Given a triangle $A B C$ and a point p, determine in $O(1)$ time if $\odot A B C$ covers p.

Spoiler: If you do not want to think, read Pg 86 of Prof. Mount's notes.
Problem 3 (Exercise 9.11 from the textbook). Let P be a set of n points in \mathbb{R}^{2}. A Euclidean spanning tree of P is a tree where every vertex is a point in P and every edge is a line segment connecting two points of P. The tree's weight equals the total (Euclidean) length of all the segments. The Euclidean minimum spanning tree (EMST) is a Euclidean spanning tree of the smallest weight. Give an algorithm to find an EMST of P in $O(n \log n)$ expected time.

Remark: It is $O(n \log n)$ "expected" only because the Delaunay computation algorithm we covered in the lecture is randomized. A Delaunay triangulation can be computed in $O(n \log n)$ worst case time (e.g., by using a planesweep or divide-and-conquer algorithm to compute the corresponding Voronoi diagram).

Problem 4* (Euclidean Traveling Salesman). Let P be a set of n points in \mathbb{R}^{2}. A tour is a sequence of n segments $\overline{p_{1} p_{2}}, \overline{p_{2} p_{3}}, \ldots, \overline{p_{n-1} p_{n}}, \overline{p_{n} p_{1}}$, where each $p_{i}(i \in[1, n])$ is a distinct point in P. The length of the tour is the total length of all the n segments. Let ℓ^{*} be the shortest length of all possible tours. Design an algorithm to find a tour with length at most $2 \ell^{*}$ in $O(n \log n)$ expected time.

Hint: Visit Prof. Tao's CSCI3160 website (https://www.cse.cuhk.edu.hk/~taoyf/course/ 3160/23-fall) and look for "Traveling Salesman".

Problem 5* (Clustering; textbook exercise 9.16). Let P be a set of n points in \mathbb{R}^{2}. A k-clustering of P is a partition $P_{1}, P_{2}, \ldots, P_{k}$ of P such that

- each $P_{i}(i \in[1, k])$ is a non-empty subset of P,
- $P_{i} \cap P_{j}=\emptyset$ for any different $i, j \in[1, k]$, and
- $P_{1} \cup P_{2} \cup \ldots \cup P_{k}=P$.

We will refer to each $P_{i}(i \in[1, k])$ as a cluster. For any different $i, j \in[i, k]$, define the distance between clusters P_{i} and P_{j} as

$$
\operatorname{dist}\left(P_{i}, P_{j}\right)=\min _{p \in P_{i}, q \in P_{j}} \operatorname{dist}(p, q)
$$

where $\operatorname{dist}(p, q)$ is the Euclidean distance between points p and q. The quality of the k-clustering is defined to be the smallest distance between all $\binom{k}{2}$ cluster pairs.

- Prove: If the quality of P is determined by two points $p, q \in P$, then $\{p, q\}$ is an edge in the Delaunay triangulation of P.
- Given a real value $r>0$ and an integer $k \geq 2$, give an algorithm to determine whether there exists a k-clustering of P whose quality is at least r. Your algorithm needs to finish in $O(n \log n)$ expected time.

Hint: The first question is easy. For the second question, what happens if we remove all the edges of the Delaunay graph of P that have lengths greater than r ?

