Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1. Let P be a set of n points in \mathbb{R}^{2}. A slab is the region between two parallel lines (inclusive of the two lines). The perpendicular width of a slab is the (perpendicular) distance between its boundary lines. Suppose that parallel lines ℓ_{1} and ℓ_{2} define a width the smallest perpendicular width among all the slabs enclosing all the points of P. Prove: either ℓ_{1} or ℓ_{2} passes two points of P.

Problem 2*. Let P be a set of n points in \mathbb{R}^{2}. Describe an algorithm to find a slab with the minimum perpendicular width that encloses all the points of P. Your algorithm should run in $O(n \log n)$ time.

Hint: Duality and Problem 1 helps.
Problem 3. Let L be a set of n non-vertical lines in \mathbb{R}^{2} where no two lines are parallel. Explain how to compute in $O(n)$ time an axis-parallel rectangle that contains all the $\binom{n}{2}$ intersect points of those lines.

Problem 4*. Let P be a set of n points in \mathbb{R}^{2}, and $k \leq n$ be an integer Describe an algorithm to find a slab with the minimum perpendicular width that encloses precisely k points of P. Your algorithm should run in $O\left(n^{2} \log n\right)$ time.

Hint: Think in the direction of Problem 1.
Problem 5*. Let P be a set of n points in \mathbb{R}^{2}. Describe an algorithm to find the smallest-area triangle whose vertices are from P. Your algorithm should finish in $O\left(n^{2} \log n\right)$ time.

Hint: Revisit Problem 6 of the previous exercise list.

