Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1. You are given the coordinates of three points in \mathbb{R}^{2}. Describe an algorithm to calculate in constant time the area of the triangle that has the three points as vertices. You should note that \sqrt{x} is not an atomic operation of the real-RAM model.
Problem 2. Let S be a set of n vertical line segments in \mathbb{R}^{2} (i.e., each segment has the form $\left.x \times\left[y_{1}, y_{2}\right]\right)$. Also, let P be a set of m points in \mathbb{R}^{2}. For each segment $s \in S$, we want to output a pair (s, p) where p is the first point in P that is hit by s if s moves left; if p does not exist, output (s, nil). For instance, in the following example, you should output $\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{1}\right),\left(s_{3}, n i l\right),\left(s_{4}, p_{2}\right)\right\}$.

Use the planesweep approach to design an algorithm to solve the above problem in $O(n \log n+$ $m \log m$) time, subject to the constraint that your algorithm should sweep a horizontal line from $y=-\infty$ to $y=\infty$. You may assume that no two segments in S share the same x-coordinate.

Problem 3 (Range Max). Let S be a set of n real numbers. Each number $v \in S$ is associated with a real valued weight. Given a range $[x, y]$, a query returns an element in $S \cap[x, y]$ with the maximum weight. For example, if $S=\{(1,15),(3,7),(7,12),(10,9)\}$, where each pair has the form $(v$, weight $(v))$. Then, a query with range $[2,15]$ returns $(7,12)$. Design a data structure to answer such queries in $O(\log n)$ time. Your structure should also support insertions and deletions in $O(\log n)$ time.

Problem 4. Consider again Problem 2. Design another planesweep algorithm to solve the above problem in $O(n \log n+m \log m)$ time. This time, your algorithm must sweep a vertical line from $x=-\infty$ to $x=\infty$. You may assume that no two points in P have the same y-coordinate.
Problem 5. Let S be a set of n disjoint line segments in \mathbb{R}^{2} (these segments can have arbitrary "slopes"), and P be a set of m points in \mathbb{R}^{2} such that no point in P falls on any segment in S. For each point $p \in P$, we want to output the segment $s \in S$ that is immediately above p, namely, s is the first segment hit by p if p moves up. For instance, in the following example, you should output $\left\{\left(p_{1}, s_{1}\right),\left(p_{2}, s_{3}\right),\left(p_{3}, s_{3}\right),\left(p_{4}, n i l\right)\right\}$. Design an algorithm to achieve the purpose in $O(n \log n+m \log m)$ time.

Problem 6 (Rotating Sweep; Exercise 2.14 from textbook). Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments in S. We want to determine all line segments of S that p can see, that is, all line segments of S that contain some point q so the segment $p q$ does not intersect any segment in S (except at q, of course). Give an $O(n \log n)$ time algorithm to solve the problem. For example, in the following figure, you should output all segments but s_{4} and s_{6}.

s_{6}

