CSCI 5010: Exercise List 13

Problem 1. Describe an algorithm to build a kd-tree on \(n \) points in \(\mathbb{R}^2 \) in \(O(n \log n) \) time.

(Hint 1: it is easy to do \(O(n \log^2 n) \) time. For improvement to \(O(n \log n) \), prepare two sorted lists of the points at the beginning: one on the x-coordinate and the other on the y-coordinate. Then think about how to maintain the two lists incrementally *without* sorting as you build the levels of the tree in a top-down fashion.)

(Hint 2: the problem is trivial if you know how to find the median in linear time without sorting.)

Problem 2. (Range Searching on Rectangles). Let \(S \) be a set of \(n \) axis-parallel rectangles in \(\mathbb{R}^2 \). Given an axis-parallel rectangle \(q \), a query reports all the rectangles \(r \in S \) such that \(r \cap q \neq \emptyset \). Describe a data structure of \(O(n) \) size that answers such a query in \(O(n^{3/4} + k) \) time, where \(k \) is the number of rectangles reported.

Problem 3. Same problem as above, but give a structure with space consumption \(O(n \log^3 n) \) and query time \(O(\log^4 n + k) \).

Problem 4 (Constrained Top-1 Search). Let \(S \) be a set of \(n \) points in \(\mathbb{R}^2 \). A *constrained top-1 search* query specifies:

- real numbers \(c_1, c_2 \), and
- an axis-parallel rectangle \(q \).

It returns a point \((x, y) \in S \cap q\) that maximizes the function \(c_1 x + c_2 y \). Describe a data structure of \(O(n \log^2 n) \) space that is able to answer any such query in \(O(\log^3 n) \) time.