
CSCI 5010: Exercise List 12

Problem 1. Consider the set P of points as shown in the figure. Suppose that we run the closest
pair algorithm on P . Recall that the algorithm first divides P in halves along the x-dimension
using a vertical line ` (see the figure), recursively solves each half, and then builds a grid. Answer
the following questions:

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

p1

p3

p5 p11

p7

p12

p2

p6

p4

p9

p8

p10

`

1. Draw the grid in the figure.

2. Consider the cell c1 of the grid that covers point p6. Recall that the algorithm needs to pair
up c1 with certain cells c2 on the right of `, in order to compute the distance of (p, q) for
every pair of points p, q covered by c1 and c2, respectively. List the center coordiantes of all
such cells c2.

Problem 2. Let P be a set of points in Rd. Give an O(n log n) expected time algorithm to find
the 2nd closest pair of P . Formally, define T = {{p, q} | p, q ∈ P ∧ p 6= q}. The 2nd closest pair is
the {p, q} ∈ T that has the second smallest dist(p, q) (i.e., Euclidean distance between p, q).

For instance, in the example dataset Problem 1, the 2nd closest pair is (p6, p9) (note that the
first closest pair is (p1, p3)).

Problem 3. Let ` be a vertical line. Let p be a point on the left of `, and P be a set of points
on the right of `. Define r as the distance of the closest pair of P . We throw away from P all the
points whose distances to ` are greater than r. Define P ′ to be the set of remaining points in P .

For p, we define its r-bounded nearest neighbor (NN) as the point q in P that is closest to p,
among all the points whose distances to p are at most r (if no such points exist, then p has no
r-nearest neighbor).

For example, in the figure below, the closest pair in P = {p1, . . . , p10} is (p5, p7) whose distance
is 2

√
2. Thus, r = 2

√
2 and P ′ = {p1, p2, p3, p4}. If p = p∗1, then p has no r-bounded NNs, while if

p = p∗2, the r-bounded NN of p is p1.

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

p5

p7

p9

p6

p10

p8

`

p∗
1

p∗
2

p1

p2

p3

p4

Consider the following approach of finding the r-bounded NN of p. First, sort P ′ ∪ {p} by
y-coordinate. Then, identify the position of p in the sorted list. Inspect the 20 points before and
after p, respectively (namely, in total 40 points are inspected). Prove that the r-bounded NN (if
exists) must be among those 40 points.

Problem 4. Let ` be a vertical line. Let P1 be a set of points on the left of `, and P2 be a set of
points on the right of `. Define r1 (or r2) as the distance of the closest pair in P1 (or P2, resp.),
and r = min{r1, r2}. Suppose that P1 and P2 have been sorted by y-coordinate. Give an O(n)
time (where n = |P1| + |P2|) algorithm to find, for each p1 ∈ P1, its r-bounded NN in P2.

Problem 5. Let P be a set of points in R2. Give an algorithm to find the closest pair of P in
O(n log n) worst case time.

2

