CSCI5010: Final Exam

Name:

Student ID:

Please write all your solutions in the answer book, except Problems 1 and 2 which should be answered in this paper.

Problem 1 (10\%). The figure below shows a set of 5 segments. Give the trapezoidal map that is decided by these segments.

Problem 2 ($\mathbf{1 0 \%}$). The left figure below shows the Delaunay triangulation of the set of black points. Suppose that we want to insert point p (i.e., the white point). Draw the resulting Delaunay triangulation in the figure on the right.

Problem 3 (20\%). Let P be a set of n points in \mathbb{R}^{2}. Given an axis-parallel rectangle q, a query reports the number of points in $q \cap P$. Describe a data structure of $O(n)$ size that answers such a query in $O(\sqrt{n})$ time.

Problem $4 \mathbf{(2 0 \%)}$. Let S be a set of horizontal segments in \mathbb{R}^{2}, where each segment has the form $\left[x_{1}, x_{2}\right] \times y$. Given a point q, a query reports the first segment of S that will be hit if we shoot a ray
upwards from q (e.g., in the figure below, the query reports s). Preprocess S into a data structure of $O(n)$ space such that a query can be answered in $O(\log n)$ time.

Problem 5 (20\%). Let S and T be two sets of points in \mathbb{R}^{2}. Let (p, q) be a closest pair of S and T, namely, the Euclidean distance between p and q is the smallest among all pairs of points in $S \times T$. For example, in the figure below, let $S(T)$ be the set of black (white) points. The closest pair is the two points between which there is a segment. Prove that there must be an edge between p and q in the Delaunay triangulation of $S \cup T$.

Problem 6 (20\%). Let P be a set of n points in \mathbb{R}^{2}. Given a rectangle r and a query point q, a constrained nearest neighbor query returns the point in $P \cap r$ that has the smallest Euclidean distance to q (i.e., among all the points of P falling in r, report the one closest to q). For example, in the figure below, let P be the set of black points; given the rectangle r and q as shown, a query returns point p_{1} as its answer (note that the answer is not p_{2} as it is outside r). Give a structure of $O\left(n \log ^{2} n\right)$ space that answers such a query in $O\left(\log ^{3} n\right)$ time.

