CSCI5010 Exercise List 9

Problem 1 (Segment-Ray Intersection). Let S be a set of horizontal rays in \mathbb{R}^{2}, where each ray has the form $[x, \infty) \times y$. Given a vertical segment $q=x \times\left[y_{1}, y_{2}\right]$, a query reports all the rays in S intersecting q (e.g., in the figure below, the query reports two rays). Preprocess S into a data structure of $O(n)$ space such that a query can be answered in $O(\log n+k)$ time, where k is the number of rays reported.

Problem 2 (Segment-Segment Intersection). Let S be a set of horizontal segments in \mathbb{R}^{2}, where each segment has the form $\left[x_{1}, x_{2}\right] \times y$. Given a vertical segment $q=x \times\left[y_{1}, y_{2}\right]$, a query reports all the segments in S intersecting q (e.g., in the figure below, the query reports two segments). Preprocess S into a data structure of $O(n)$ space such that a query can be answered in $O\left(\log ^{2} n+k\right)$ time, where k is the number of segments reported. (Hint: combine an interval tree and priority search trees.)

Problem 3 (Ray Shooting). Let S be a set of horizontal segments in \mathbb{R}^{2}, where each segment has the form $\left[x_{1}, x_{2}\right] \times y$. Given a point q, a query reports the first segment of S that will be hit if we shoot a ray upwards from q (e.g., in the figure below, the query reports s). Preprocess S into a data structure of $O(n)$ space such that a query can be answered in $O(\log n)$ time. (Hint: convert the problem into a point location problem.)

