CSCI5010 Exercise List 7

Problem 1 (Smallest Enclosing Square: Semi-Uniqueness). Let P be a set of n points in \mathbb{R}^{2}. An axis-parallel square S is an enclosing square of P if all the points of P are covered by S. Prove that

- There can be two enclosing squares of P with the minimum side length.
- If there are two enclosing squares of P with the minimum side length, then their centers must either have the same x -coordinate, or the same y-coordinate.

Problem 2 (Smallest Enclosing Square: Algorithm). Design an $O(n)$ expected time algorithm to compute the minimum enclosing square of P.
Problem 3 (Range Count). Let P be a set of n points in \mathbb{R}^{2}. Given an axis-parallel rectangle q, a range count query returns the number of points of P that are covered by q. Design a structure of $O(n \log n)$ space that answers a query in $O\left(\log ^{2} n\right)$ time.
Problem 4 (Range Count). Improve the query time of your structure for Problem 3 to $O(\log n)$ using fractional cascading. The space of your structure should remain $O(n \log n)$.

