CSCI5010 Exercise List 12

Problem 1 (Gabriel Graph; Problem 9.13 of the Textbook). Let P be a set of points in \mathbb{R}^{2}. P defines a gabriel graph G as follows. Each vertex of G corresponds to a distinct point of P. Two vertices p_{1}, p_{2} are connected by an edge in G if and only if the circle with segment $p_{1} p_{2}$ as a diameter does not cover any point of P in its interior. Prove:

- If there is an edge between p_{1} and p_{2} in G, then there is a Delaunay edge between p_{1} and p_{2}.
- There is an edge between p_{1} and p_{2} in G if and only if the Delaunay edge between p_{1} and p_{2} intersects the boundary edge of the Voronoi cells of p_{1} and p_{2}.

Problem 2 (k-Clustering; Problem 9.16 of the Textbook). A k-clustering of a set P of n points in \mathbb{R}^{2} is a partitioning of P into k non-empty subsets P_{1}, \ldots, P_{k}. Define the distance between any pair P_{i}, P_{j} of clusters to be the minimum distance between one point from P_{i} and one point from P_{j}, namely:

$$
\operatorname{dist}\left(P_{i}, P_{j}\right)=\min _{p \in P_{i}, q \in P_{j}} \operatorname{dist}(p, q)
$$

We want to find a k-clustering that maximizes the minimum distance between clusters, namely, to maximize $\min _{i \neq j} \operatorname{dist}\left(P_{i}, P_{j}\right)$.

- Suppose that $\min _{i \neq j} \operatorname{dist}\left(P_{i}, P_{j}\right)$ is achieved by points $p \in P_{i}, q \in P_{j}$. Prove that the segment $p q$ is an edge of the Delaunay triangulation of P.
- Give an $O(n \log n)$ time algorithm to compute such a k-clustering.

