All-Pairs Shortest Paths:

The Floyd-Warshall algorithm

Yufei Tao's Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

(AII—Pairs Shortest Paths (APSP))

Input: Let G = (V, E) be a simple directed graph. Let w be a function
that maps each edge in E to an integer, which can be positive, 0, or
negative. It is guaranteed that G has no negative cycles.

Output: We want to find a shortest path (SP) from s to t, for all
s,t € V. More specifically, the output should be | V| shortest-path trees,
each rooted at a distinct vertex in V.

2/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

ch>O
Shortest path distances:
spdist(a, a) = 0, spdist(a, b) =1, ..., spdist(a,g) = —
spdist(b, a) = oo, spdist(b,b) =0, ..., spdist(b,g) =

spdist(g, a) = oo, spdist(g, b) = oo, ..., spdist(g,g) =0

We omit the shortest paths in this example.

3/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

If all the weights are non-negative, we can run Dijkstra’s algorithm
|V| times. The total time is O(|V|(|V| + |E|) log |V]).

For the general APSP problem (arbitrary weights), we have learned
Johnson's algorithm which runs in O(|V|(|V| + |E|) log |V]) time.

Today we will discuss the Floyd-Warshall algorithm that solves
the (general) APSP problem in O(|V|®) time. This improves
both Dijkstra’s and Johnson's algorithms when |E]| is large, e.g.,
(V).

By discussing the Floyd-Warshall algorithm, we will see how dynamic
programming can be deployed to find shortest paths.

4/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Set n=|V|.
Assign each vertex in V a distinct id from 1 to n.

Example:

Let us assign to 1 vertex a, 2 to vertex b, ..., 7 to vertex g.

5/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Define spdist(i,j |< k) as the smallest length of all paths from the vertex

with id / to the vertex with id j that pass only intermediate vertices

with ids < k.

Example: Vertex ids: 1 for a, 2 for b, ...,

spdist(1,5 |< 0) = oo, spdist(1,5 |< 1) =
o0, spdist(1,5 |< 3) = 1, spdist(1,5 |<
5) =1, spdist(1,5 |< 6) = 1, spdist(1,5 |

spdist(3,4 |< 0) =
-5

7 for g.

00, spdist(1,5 (< 2) =
4) = 1, spdist(1,5 |<
<7)=-6

—2, spdist(3,5 |< 0) = oo, spdist(3,5 |< 4) =

6/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< 0) equals
0 0,ifi =
o w(i,j), if (i,j) € E;

@ 00, otherwise.

Lemma: It holds for all i, j, k € [1, n] that

spdist(i,j |< k) =

min spdist(i,j |< k — 1)
spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Observe that spdist(i, j |< n) = spdist(i, j).
Our goal is therefore to compute spdist(i,j |< n) for all i,j € [1,n].

7/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

i

Proof of the lemma. Let 7 be an arbitrary path that “realizes’
spdist(i,j |< k), namely

@ 7 starts from / and ends at j;
@ 7 uses only intermediate vertices with IDs at most k;
@ 7 has distance spdist(i,j |< k).

We distinguish two cases.
Case 1: k is not on 7.

This means that all the intermediate vertices of m have IDs at most
k — 1. Therefore, the length of m must be exactly spdist(i,j |< k — 1).

Think: It must hold that
spdist(i,j |< k — 1) < spdist(i, k |< k — 1) + spdist(k,j |< k — 1) in this
case. Why?

8/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Case 2: kison .

It suffices to consider that k appears on 7 only once (think: if k appears
on 7 twice, what would you do?).

:
é

Length of 71 must be exactly spdist(i, k |< k — 1) (think: why?).
Length of m, must be exactly spdist(k,j |< k —1).

Therefore, in this case, the length of m must be
spdist(i, k |< k — 1) + spdist(k,j |< k —1).

Think: It must hold that
spdist(i, k |< k — 1) + spdist(k,j |< k — 1) < spdist(i, |< k — 1) in this
case. Why? O

9/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Lemma: It holds for all i, j, k € [1, n] that

spdist(i,j |< k) =

. spdist(i,j |< k —1)
MY spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Goal: Compute spdist(i,j |< n) for all i,j € [1, n].

The lemma suggests a dynamic programming algorithm that com-
putes spdist(i,j| < n) for all i,j € [1,n] in O(]V|3) total time.

Sub-problems: spdist(i,j |< k) for all i,j € [1,n] and k € [0, n].
Think: Dependency graph for the sub-problems?

10/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

First, decide spdist(i,j | < 0) for all i,j € [1,7].

a vertex v | a b c d e f g
a 0 1 oo | —6 00 00 00
b) 0 1 [e%S) 9] 9] 9]
c oo | oo 0 -2 | -1 | o© 00
d oo | oo | o0 0 0o co | =3
e oo | oo | oo 5 0 00 00
f oo | oo | o0 0o 1 0 0o
g oo | oo | o0 00 00 2 0

11/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Then, compute spdist(i,j | < 1) for all i,j € [1,7]. No changes.

a vertex v a b c d e f g

i a 0 1 oo | =6]| c0 | o0 | o0

/ —G b 00 0 1 00 oo | oo | oo
bO A -3 9 c o |oo | 0| -2|-1]o00]| o
_9 3 f‘/Q/ d oo | oo | o 0 0o co | =3

1{ I’J O e oo | oo | oo 5 0 oo | oo
e ‘/1 f oo | oo | 0o | oo 1 0 o0

¢ TO g 00 | oo | oo | o0 | 2 0

12/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Compute spdist(i,j | <2) for all i,j € [1,7].

a vertex v a b c d e f g

i a 0 1 2 | =6 | c0 | o0 | o0

/ —G b 00 0 1 00 oo | oo | oo
bO A -3 9 c o |oo | 0| -2|-1]o00]| o
_9 3 f‘/Q/ d oo | oo | o 0 0o co | =3

1{ I’J O e oo | oo | oo 5 0 oo | oo
e ‘/1 f oo | oo | 0o | oo 1 0 o0

¢ TO g 00 | oo | oo | o0 | 2 0

13/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Compute spdist(i,j | < 3) for all i,j € [1,7].

a vertex v a b c d e f g

i a 0 1 2 | -6 1 oo | oo

/ =6 b 0| 01| -1|0 |oo| o
bO -3 56 c o |oo | 0| -2|-1]o00]| o
_9 3 f‘/Q/ d oo | oo | o 0 0o co | =3

1{ I’J O e oo | oo | oo 5 0 oo | oo
e ‘/1 f oo | oo | 0o | oo 1 0 o0

¢ TO g 00 | oo | oo | o0 | 2 0

14/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k—1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Compute spdist(i,j | < 4) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 —6 1 o | —9
b 00 0 1 -1 0 oo | —4
c oo | o 0 —2 | —-1]oco0 | =5
d oo | oo | oo 0 00 oo | =3
e co | oo | o 5 0 o] 2
f © | o | oo 9] 1 0)
— g © | 0 | oo |] 2 0

15/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Compute spdist(i,j | <5) for all i,j € [1,7].

a vertex v a b c d e f g

) , a 0 12 6] 1 o] -9
/ =6 b | 0|1 |-1]0 |occ]|-4

b -3 9 c o |oo | 0| —-2|-1]o0c0]| -5
@ 9 'WO d 0 | 0o | oo 0 o | oo | =3
1{ I’J O e oo | oo | oo 5 0 () 2
. eO'/l f oo | oo | oo 6 1 0 3
1 g 0o | oo | o0 00 00 2 0

16/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Compute spdist(i,j | < 6) for all i,j € [1,7].

a vertex v a b c d e f g

) , a 0 12 6] 1 o] -9
/ =6 b | 0|1 |-1]0 |occ]|-4

b -3 9 c o |oo | 0| —-2|-1]o0c0]| -5
@ 9 OVTQ/» d 0 | 0o | oo 0 o | oo | =3
1{ I’J O e oo | oo | oo 5 0 () 2
. eO'/l f oo | oo | oo 6 1 0 3
1 g 0o | oo | o0 8 3 2 0

17/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

min spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Compute spdist(i,j | < 7) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 -6 | —6 | —7 | -9
b 0o 0 1 —1 -1 -2 —4
c oo | oo 0 -2 | -2 | -3 | =5
d o0 | oo | oo 0 0 -1 | -3
e oo | oo | oo 5 0 4 2
f o | o | oo 6 1 0 3
g oo | oo | o0 8 3 2 0

Now we are done.

18/19

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

We have focused on computing the shortest path distances
spdist(s, t) for all s,t € V. How to extend the algorithm to report
the shortest path tree rooted at each s € V7

Hint: The piggyback technique.

19/19
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

