All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

All-Pairs Shortest Paths (APSP)

Input: Let G = (V, E) be a simple directed graph. Let w be a function that maps each edge in E to an integer, which can be positive, 0, or negative. It is guaranteed that G has no negative cycles.

Output: We want to find a shortest path (SP) from s to t, for all $s, t \in V$. More specifically, the output should be |V| shortest-path trees, each rooted at a distinct vertex in V.

Example

Shortest path distances:

$$spdist(a, a) = 0$$
, $spdist(a, b) = 1$, ..., $spdist(a, g) = -9$
 $spdist(b, a) = \infty$, $spdist(b, b) = 0$, ..., $spdist(b, g) = -4$

. . .

$$spdist(g, a) = \infty$$
, $spdist(g, b) = \infty$, ..., $spdist(g, g) = 0$

We omit the shortest paths in this example.

If all the weights are non-negative, we can run Dijkstra's algorithm |V| times. The total time is $O(|V|(|V|+|E|)\log |V|)$.

For the general APSP problem (arbitrary weights), we have learned Johnson's algorithm which runs in $O(|V|(|V| + |E|) \log |V|)$ time.

Today we will discuss the **Floyd-Warshall algorithm** that solves the (general) APSP problem in $O(|V|^3)$ time. This improves both Dijkstra's and Johnson's algorithms when |E| is large, e.g., $\Theta(|V|^2)$.

By discussing the Floyd-Warshall algorithm, we will see how dynamic programming can be deployed to find shortest paths.

Set n = |V|.

Assign each vertex in V a distinct id from 1 to n.

Example:

Let us assign to 1 vertex a, 2 to vertex b, ..., 7 to vertex g.

Define $spdist(i,j | \le k)$ as the smallest length of all paths from the vertex with id i to the vertex with id j that pass only **intermediate** vertices with **ids** $\le k$.

Example: Vertex ids: 1 for a, 2 for b, ..., 7 for g.

 $\begin{array}{l} \textit{spdist}(1,5 \mid \leq 0) = \infty, \; \textit{spdist}(1,5 \mid \leq 1) = \infty, \; \textit{spdist}(1,5 \mid \leq 2) = \\ \infty, \; \textit{spdist}(1,5 \mid \leq 3) = 1, \; \textit{spdist}(1,5 \mid \leq 4) = 1, \; \textit{spdist}(1,5 \mid \leq 5) = 1, \; \textit{spdist}(1,5 \mid \leq 6) = 1, \; \textit{spdist}(1,5 \mid \leq 7) = -6 \\ \textit{spdist}(3,4 \mid \leq 0) = -2, \; \textit{spdist}(3,5 \mid \leq 0) = \infty, \; \textit{spdist}(3,5 \mid \leq 4) = -5 \end{array}$

 $spdist(i, j \mid \leq 0)$ equals

- 0, if i = j;
- w(i,j), if $(i,j) \in E$;
- \bullet ∞ , otherwise.

Lemma: It holds for all $i, j, k \in [1, n]$ that $spdist(i, j \mid \leq k) = \min \begin{cases} spdist(i, j \mid \leq k - 1) \\ spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \end{cases}$

Observe that $spdist(i, j | \le n) = spdist(i, j)$. Our goal is therefore to compute $spdist(i, j | \le n)$ for all $i, j \in [1, n]$. **Proof of the lemma.** Let π be an arbitrary path that "realizes" $spdist(i,j|\leq k)$, namely

- π starts from i and ends at j;
- π uses only intermediate vertices with IDs at most k;
- π has distance $spdist(i, j | \leq k)$.

We distinguish two cases.

Case 1: k is not on π .

This means that all the intermediate vertices of π have IDs at most k-1. Therefore, the length of π must be exactly $spdist(i,j| \leq k-1)$.

Think: It must hold that $spdist(i, j | \leq k - 1) \leq spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1)$ in this case. Why?

Case 2: k is on π .

It suffices to consider that k appears on π only once (think: if k appears on π twice, what would you do?).

Length of π_1 must be exactly $spdist(i, k | \leq k - 1)$ (think: why?). Length of π_2 must be exactly $spdist(k, j | \leq k - 1)$.

Therefore, in this case, the length of π must be $spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1)$.

Think: It must hold that

 $spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \le spdist(i, j | \le k - 1)$ in this case. Why?

Lemma: It holds for all $i, j, k \in [1, n]$ that

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Goal: Compute $spdist(i, j | \le n)$ for all $i, j \in [1, n]$.

The lemma suggests a dynamic programming algorithm that computes $spdist(i,j| \le n)$ for all $i,j \in [1,n]$ in $O(|V|^3)$ total time.

Sub-problems: $spdist(i, j | \le k)$ for all $i, j \in [1, n]$ and $k \in [0, n]$.

Think: Dependency graph for the sub-problems?

Example

First, decide $spdist(i, j \mid \leq 0)$ for all $i, j \in [1, 7]$.

vertex v	а	Ь	С	d	e	f	g
а	0	1	∞	-6	∞	∞	∞
Ь	∞	0	1	∞	∞	∞	∞
C	∞	∞	0	-2	-1	∞	∞
d	∞	∞	∞	0	∞	∞	-3
e	∞	∞	∞	5	0	∞	∞
f	∞	∞	∞	∞	1	0	∞
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Then, compute $spdist(i, j \mid \leq 1)$ for all $i, j \in [1, 7]$. No changes.

vertex v	а	b	С	d	e	f	g
а	0	1	∞	-6	∞	∞	∞
Ь	∞	0	1	∞	∞	∞	∞
С	∞	∞	0	-2	-1	∞	∞
d	∞	∞	∞	0	∞	∞	-3
е	∞	∞	∞	5	0	∞	∞
f	∞	∞	∞	∞	1	0	∞
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j \mid \leq 2)$ for all $i, j \in [1, 7]$.

vertex v	а	b	С	d	e	f	g
а	0	1	2	-6	∞	∞	∞
Ь	∞	0	1	∞	∞	∞	∞
С	∞	∞	0	-2	-1	∞	∞
d	∞	∞	∞	0	∞	∞	-3
е	∞	∞	∞	5	0	∞	∞
f	∞	∞	∞	∞	1	0	∞
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j \mid \leq 3)$ for all $i, j \in [1, 7]$.

vertex v	а	b	С	d	e	f	g
а	0	1	2	-6	1	∞	∞
Ь	∞	0	1	-1	0	∞	∞
С	∞	∞	0	-2	-1	∞	∞
d	∞	∞	∞	0	∞	∞	-3
е	∞	∞	∞	5	0	∞	∞
f	∞	∞	∞	∞	1	0	∞
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j \mid \leq 4)$ for all $i, j \in [1, 7]$.

vertex v	а	Ь	С	d	e	f	g
а	0	1	2	-6	1	∞	-9
Ь	∞	0	1	-1	0	∞	-4
c	∞	∞	0	-2	-1	∞	-5
d	∞	∞	∞	0	∞	∞	-3
e	∞	∞	∞	5	0	∞	2
f	∞	∞	∞	∞	1	0	∞
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j \mid \leq 5)$ for all $i, j \in [1, 7]$.

vertex v	а	b	С	d	e	f	g
а	0	1	2	-6	1	∞	-9
Ь	∞	0	1	-1	0	∞	-4
С	∞	∞	0	-2	-1	∞	-5
d	∞	∞	∞	0	∞	∞	-3
е	∞	∞	∞	5	0	∞	2
f	∞	∞	∞	6	1	0	3
g	∞	∞	∞	∞	∞	2	0

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j | \leq 6)$ for all $i, j \in [1, 7]$.

vertex v	а	Ь	С	d	e	f	g
а	0	1	2	-6	1	∞	-9
Ь	∞	0	1	-1	0	∞	-4
С	∞	∞	0	-2	-1	∞	-5
d	∞	∞	∞	0	∞	∞	-3
е	∞	∞	∞	5	0	∞	2
f	∞	∞	∞	6	1	0	3
g	∞	∞	∞	8	3	2	0

Example

$$\begin{aligned} & \textit{spdist}(i,j \mid \leq k) = \\ & \min \left\{ \begin{array}{l} & \textit{spdist}(i,j \mid \leq k-1) \\ & \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1) \end{array} \right. \end{aligned}$$

Compute $spdist(i, j | \leq 7)$ for all $i, j \in [1, 7]$.

vertex v	а	Ь	С	d	e	f	g
а	0	1	2	-6	-6	-7	-9
Ь	∞	0	1	-1	-1	-2	-4
c	∞	∞	0	-2	-2	-3	-5
d	∞	∞	∞	0	0	-1	-3
e	∞	∞	∞	5	0	4	2
f	∞	∞	∞	6	1	0	3
g	∞	∞	∞	8	3	2	0

Now we are done.

We have focused on computing the shortest path distances spdist(s,t) for all $s,t \in V$. How to extend the algorithm to report the shortest path tree rooted at each $s \in V$?

Hint: The piggyback technique.