Dynamic Programming: Piggyback, Dependency, and Space

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

Dynamic Programming: Piggyback, Dependency, and Space

1/18

イロト イボト イヨト イヨト

Principle of Dynamic Programming

- Remember the output of every subproblem to avoid re-computation.
- Resolve subproblems according to an appropriate order.

2/18

・ロト ・同ト ・ヨト ・ヨト

Problem 2 (Regular List 6)

In the lecture, we derived for the rod cutting problem:

$$opt(n) = \max_{i=1}^{n} (P[i] + opt(n-i)).$$

Define bestSub(n) = k if the above maximization is obtained at i = k.

Example					
	length <i>i</i>	1	2	3	4
	price P[i]	1	5	8	9
	opt(i)		5		10
	bestSub(i)	1	2	3	2

How to compute bestSub(1), bestSub(2), ..., bestSub(n) in $O(n^2)$ time?

3/18

First, compute opt(1), opt(2), ..., opt(n) in $O(n^2)$ time, as discussed in the lecture.

For each $t \in [1, n]$, compute bestSub(t) as follows:

- Identify the $k \in [1, t]$ maximizing P[k] + opt(t k).
 - This takes O(t) time.
- Set bestSub(t) = k.

Doing so for all $t \in [1, n]$ takes $O(n^2)$ time.

The idea of computing bestSub(t) for all $t \in [1, n]$ is called the **piggyback technique**.

Dynamic Programming: Piggyback, Dependency, and Space

э.

4/18

イロト イポト イラト イラト

Problem 2 (cont.)

In the lecture, we derived for the rod cutting problem:

$$opt(n) = \max_{i=1}^{n} (P[i] + opt(n-i)).$$

Define bestSub(n) = k if the above maximization is obtained at i = k.

Suppose that we have already computed bestSub(1), bestSub(2), ..., bestSub(n). How do we output an optimal cutting method — namely, a sequence of lengths achieving the maximum revenue — in O(n) time?

5/18

イロト 不得 トイヨト イヨト ニヨー

1.
$$\ell \leftarrow n$$

2. while $\ell > 0$ do

3. output "length
$$bestSub(\ell)$$
"

4.
$$\ell \leftarrow \ell - bestSub(\ell)$$

Example

length <i>i</i>	1	2	3	4
price P[i]	1	5	8	9
opt(i)	1	5	8	10
bestSub(i)	1	2	3	2

Output:

length 2

length 2

Dynamic Programming: Piggyback, Dependency, and Space

6/18

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Problem 3 (Regular List 6)

Let A be an array of n integers. Define function f(a, b) — where $a \in [1, n]$ and $b \in [1, n]$ — as follows:

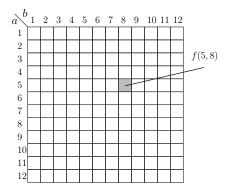
$$f(a,b) = \begin{cases} 0 & \text{if } a \ge b \\ (\sum_{c=a}^{b} A[c]) + \min_{c=a+1}^{b-1} \{f(a,c) + f(c,b)\} & \text{otherwise} \end{cases}$$

Design an algorithm to calculate f(1, n) in $O(n^3)$ time.

7/18

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

List all the subproblems.



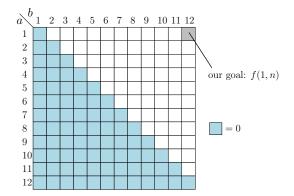
Dynamic Programming: Piggyback, Dependency, and Space

8/18

◆□ → ◆□ → ◆臣 → ◆臣 → □臣 □

Solution

f(a, b) = 0 when $a \ge b$.



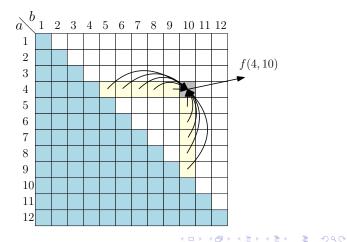
Dynamic Programming: Piggyback, Dependency, and Space

9/18

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

$$f(a, b) = (\sum_{c=a}^{b} A[c]) + \min_{c=a+1}^{b-1} \{f(a, c) + f(c, b)\}$$
 when $a < b$.

Find out the dependency relationships.

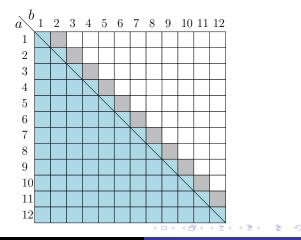


10/18

Solution

$$f(a, b) = (\sum_{c=a}^{b} A[c]) + \min_{c=a+1}^{b-1} \{f(a, c) + f(c, b)\}$$
 when $a < b$.

Let us start with the gray cells — they correspond to f(a, b) where a = b - 1. These cells depend on no other cells.

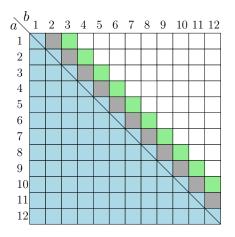


Dynamic Programming: Piggyback, Dependency, and Space

11/18

Solution

Let us continue with the green cells — they correspond to f(a, b) where a = b - 2. Every such cell depends on two gray cells, which have already been computed.

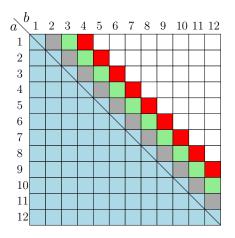


-

12/18

A B M A B M

Let us continue with the red cells — they correspond to f(a, b) where a = b - 3. Every such cell depends on two gray cells and two green cells, all of which have been computed.



-

13/18

A B M A B M

The order can be summarized as follows.

- All cells f(a, b) with b a = 1, each computed in O(1) time.
- All cells f(a, b) with b a = 2, each computed in O(2) time.

• ...

• All cells f(a, b) with b - a = k, each computed in O(k) time.

• ...

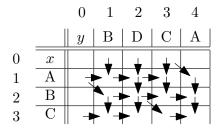
• All cells f(a, b) with b - a = n - 1, each computed in O(n - 1) time. There are $O(n^2)$ values to calculate. Total time complexity = $O(n^3)$.

14/18

Problem 4 (Space Consumption)

In Lecture Notes 8, our algorithm for computing f(n, m) used O(nm) space. Next, we will reduce the space complexity to O(n + m).

Recall the dependency graph:

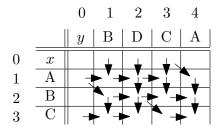


Dynamic Programming: Piggyback, Dependency, and Space

15/18

周 ト イ ヨ ト イ ヨ

We can calculate the values in the row-major order, i.e., row 0 to row 3 and left to right in each row. We used O(mn) space because we stored all the values. Observe, however, that only two rows need to be stored at any moment .

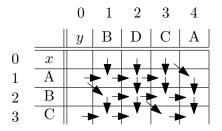


Dynamic Programming: Piggyback, Dependency, and Space

16/18

伺 ト イ ヨ ト イ ヨ ト

Same idea for the column-major order.



So the space complexity is $O(\min\{m, n\})$, in addition to the O(n + m) space needed to store x and y.

Dynamic Programming: Piggyback, Dependency, and Space

17/18

Think: Can this trick be used to reduce the space in Problem 2?

18/18

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで