
1/1

Further Discussion on Set Cover and Hitting Set

Yufei Tao’s Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

2/1

Set Cover

Let U be a finite set called the universe.

We are given a family S where

each member of S is a set S ⊆ U;⋃
S∈S S = U.

A sub-family C ⊆ S is a universe cover if every element of U appears in
at least one set in C.

Define the cost of C as |C|.

The set cover problem:
Find a universe cover with the smallest cost.

3/1

Example: U = {1, 2, 3, 4, 5, 6, 7, 8} and S = {S1,S2, ...,S5} where

S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}.

An optimal solution is C = {S1,S2,S3,S4}.

4/1

Our Approximation Algorithm

1. C = ∅
2. while U still has elements not covered by any set in C

3. F ← the set of elements in U not covered by any set in C

/* for each set S ∈ S, define its benefit to be |S ∩ F | */
4. add to C a set in S with the largest benefit
5. return C

We proved in the lecture that the algorithm is (1 + ln |U|)-
approximate.

Next, we will prove that the algorithm is also h-approximate, where
h = maxS∈S |S |.

5/1

Example: S = {S1,S2, ...,S5} where

S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}.

Then, h = 4.

6/1

Theorem: The algorithm returns a universe cover with cost at
most h · OPTS.

Proof. Suppose that our algorithm picks t sets. Every time the
algorithm picks a set, at least one new element is covered. For each
i ∈ [1, t], denote by ei an arbitrary element that is newly covered when
the i-th set is picked.

Let C∗ be an optimal universe cover. Because each ei exists in at least
one set of C∗, we have:

t =
t∑

i=1

1 ≤
t∑

i=1

sets in C∗ containing ei

≤
∑
e∈U

sets in C∗ containing e

=
∑
S∈C∗

|S | ≤ |C∗| · h.

7/1

Corollary: If h = O(1), then our algorithm achieves a constant
approximation ratio.

Remark: With a more careful analysis, we can actually prove that
our algorithm has an approximation ratio of 1 + ln h.

Not required in this course.

8/1

Our set cover algorithm can be used to solve many problems with
approximation guarantees. Next, we will see two examples.

9/1

Vertex Cover

G = (V ,E) is an undirected graph. We want to find a small subset
V ′ ⊆ V such that every edge of E is incident to at least one vertex in
V ′. The optimization goal is to minimize |V ′|.

Convert the problem to set cover:

For every v ∈ V , define Sv = the set of edges incident on v .

Apply our algorithm on the set-cover instance: S = {Sv | v ∈ V }.
This gives an min{O(ln |V |), h}-approximate solution, where
h = maxv∈V |Sv |.

Remark: This algorithm is not as competitive as the 2-approximate
vertex-cover algorithm we discussed in the lecture. But the point
here is to demonstrate the usefulness of set cover, rather than
improving the approximation ratio.

10/1

Facility Location

R = a set of n 2D red points, each called a facility
B = a set of n 2D black points, each called a customer
ϵ = a positive integer.

A subset S ⊆ R is a feasible facility set if, for every black point b ∈ B,
there is at least one point r ∈ S with dist(r , b) ≤ ϵ.

ε

OPT = the smallest size of all feasible facility sets.

Goal: Return a feasible facility set with size OPT · O(log n) (assuming

the existence of at least one feasible facility set).

11/1

Facility Location

ε

Convert the problem to set cover:

For every r ∈ R, define Sr = the set of black points b satisfying
dist(r , b) ≤ ϵ.

Apply our algorithm on the set-cover instance: S = {Sr | r ∈ R}.

This gives an O(log n)-approximate solution.

12/1

Next, we will turn our attention to the hitting set problem.

13/1

Hitting Set

Let U be a finite set called the universe.

We are given a family S where

each member of S is a set S ⊆ U;⋃
S∈S S = U.

A subset H ⊆ U hits a set S ∈ S if H ∩ S ̸= ∅.
A subset H ⊆ U is a hitting set if it hits all the sets in S.

The hitting set problem:
Find a hitting set H of the minimize size.

14/1

Example: U = {1, 2, 3, 4, 5} and S = {S1,S2, ...,S8} where

S1 = {1, 4, 5}
S2 = {1, 2, 5}
S3 = {1, 5}
S4 = {1}
S5 = {2}
S6 = {3}
S7 = {2, 3}
S8 = {4, 5}

An optimal solution is H = {1, 2, 3, 4}.

15/1

We can obtain a (1+ ln |S|)-approximate solution by resorting to a
set-cover algorithm.

Set cover and hitting set are essentially the same problem.

16/1

Facility Location (Revisited)

R = a set of n 2D red points, each called a facility
B = a set of n 2D black points, each called a customer
ϵ = a positive integer.

A subset S ⊆ R is a feasible facility set if, for every black point b ∈ B,
there is at least one point r ∈ S with dist(r , b) ≤ ϵ.

OPT = the smallest size of all feasible facility sets.

How to cast the problem as an instance of the hitting set problem?

17/1

Facility Location (Revisited)

ϵ

Convert the problem to hitting set:

For every b ∈ B, define Sb = the set of red points r satisfying
dist(r , b) ≤ ϵ.

Solve the hitting set instance: S = {Sb | b ∈ B}.

18/1

Why both set cover and hitting set?

Sometimes, one perspective is easier to perceive than the other.

19/1

Scheduling

We have t events: 1, 2, ..., t.
Set Si contains the dates on which event i can be scheduled to take place.

Goal: Find the smallest number of dates to schedule all events.

Is this a hitting set or set cover problem in your eyes?

20/1

Earlier, for set cover, we proved that our algorithm taught in the
class has an approximation ratio h, where h is the size of the largest
set in the input collection.

As set cover is equivalent to hitting set, that result should also
imply a new approximation ratio for hitting set. What is the ratio?

