
1/16

Reductions for Proving NP-Hardness

Yufei Tao’s Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

2/16

This tutorial will discuss how to prove a problem to be NP-hard. The
technique we will use is called reduction.

Remark: Reductions are discussed in detail in CSCI3130 (Formal

Languages and Automata). The purpose of today’s material is to permit

students without CSCI3130 experiences to learn about reductions.

3/16

Review

In computer science, there is a set of NP-hard problems for which no
polynomial-time algorithms can exist unless P = NP.

P = the set of problems that can be solved in polynomial
time on a deterministic Turing machine

NP = the set of problems that can be solved in polynomial
time on a non-deterministic Turing machine

4/16

Reduction

We can argue for the NP-hardness of a problem P1 in two steps:

1 Identify another problem P2 that is already known to be
NP-hard.

2 Prove that, if we are given an arbitrary polynomial-time
algorithm A1 for P1, then we can always design a polynomial
time algorithm A2 for P2 (by treating A1 as a black box).

This method is called reduction.

We say that P2 can be reduced (i.e., converted) to P1 in
polynomial time.

Since P2 is NP-hard, so is P1.

5/16

The Clique Decision Problem: Let G = (V ,E) be an undirected
graph. Given an integer k , decide whether we can find a set S of
at least k vertices in V that are mutually connected (i.e., there is
an edge between any two vertices in S).

Those k vertices and the edges among them form a k-clique.

Example: Consider

a

b

c d

e

f

The answer is “yes” for k ≤ 3, but “no” for k ≥ 4.

6/16

We will prove that the clique decision problem is NP-hard. This means
that no algorithm can solve the problem in time polynomial in both |V |
and k unless P = NP.

O(|V |k) is not polynomial in k .

Think: If k is a constant (e.g., 3), can you solve the problem in
polynomial time?

This is our problem P1. To apply reduction, we need to identify a

problem P2.

7/16

3-SAT

Variable: a boolean unknown x that can be assigned 0 or 1.
Literal: a variable x or its negation x̄ .
Clause: the OR of up to 3 literals.
Formula: the AND of clauses

The 3-SAT problem: Is there a truth assignment for the variables
under which the formula evaluates to 1? Such an assignment is
called a certificate.

Example:

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄4)

The answer is “yes”. A certificate: x1 = 1, x2 = 1, x3 = 0, x4 = 0.

(x1) ∧ (x̄1 ∨ x2) ∧ (x̄2)

The answer is “no”.

8/16

The input size of 3-SAT is the number of clauses.

Lemma: 3-SAT is NP-hard.

In other words, no algorithm can solve 3-SAT in time polynomial in the

number of clauses. The proof of the lemma is not required in this course.

9/16

We will reduce 3-SAT to clique decision. Specifically, we will prove:

Theorem: If we have an algorithm A solving the clique decision
problem in time in |V | and k , we can solve the 3-SAT problem
using A in time polynomial in the number of clauses.

The next few slides serve as a proof of the theorem.

10/16

Given an input to 3-SAT — namely a formula F with k clauses — we
will construct a graph G (V ,E) such that F has a truth assignment if
and only if G has a k-clique.

We construct G (V ,E) as follows:

For each clause, create a vertex in V for every literal in the clause.

For each pair of distinct vertices u, v ∈ V , create an edge {u, v} in
E if the literals corresponding to u, v

do not appear in the same clause, and
are not negations of each other.

11/16

Example 1

Consider formula F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄4)
First step: create vertices

x1 x2 x3

x2
x3

x4

x̄1

x̄4

Second step: create edges

x1 x2 x3

x2
x3

x4

x̄1

x̄4

There are 3-cliques in the graph.

12/16

Example 2

Consider formula F = (x1) ∧ (x̄1 ∨ x2) ∧ (x̄2)
First step: create vertices

x1

x̄1
x2

x̄2

Second step: create edges

x1

x̄1
x2

x̄2

There are no 3-cliques in the graph.

13/16

Claim 1: If F has a certificate, then G has a k-clique.

Proof: Every clause has a literal equal to 1 under the certificate. Pick
one such literal from every clause (if a clause has multiple literals equal
to 1, any of them can be picked).

No two literals picked can be negations of each other (because x and x̄
cannot both be 1).

Let vi be the vertex in G corresponding to the literal picked from the i-th

clause (1 ≤ i ≤ k). The claims follows from the fact that there is an

edge between any two distinct vertices in {v1, v2, ..., vk}.

14/16

Claim 2: If G has a k-clique, F has a certificate.

Proof: Let v1, v2, ..., vk be the vertices of the k-clique in G .

The literals corresponding to the k vertices must come from different
clauses (because the vertices of two literals from the same clause are not
connected).

The literals corresponding to the k vertices cannot be negations of each
other (because if two literals are negations of each other, their vertices
are not connected).

We can therefore construct a certificate by setting those k literals to

1.

15/16

We now know that clique decision is NP-hard. Let us now consider its
optimization version:

The Maximum Clique Problem: Let G = (V ,E) be an undi-
rected graph. Find the maximize k ∈ [1, |V |] such that G has a
k-clique.

Example: Consider the following graph.

a

b

c d

e

f

The value of k is 3.

16/16

Think: How to prove that the maximum clique problem cannot be solved

in polynomial time unless P = NP?

