Problem 1.

T
 F
 T
 T
 F
 F

7. T

Problem 2. opt(1) = 3, opt(2) = 6, opt(3) = 9, opt(4) = 12, opt(5) = 15, opt(6) = 18, and opt(7) = 21.
Problem 3. ad, cd, de, ab, ef.

Problem 4.

Problem 5. Let A be the input array for the inversion counting problem. Construct a set P of n points as follows: for each $i \in [1, n]$, add to P the point $p_i = (i, -A[i])$. Observe that (i, j) is an inversion if and only if point p_j dominates p_i . We run a dominance counting algorithm to find, for each point p_j $(j \in [1, n])$, the number c_j of points dominated by p_j . Then, the number of inversions in A can be obtained as $\sum_{j=1}^{n} c_j$. As P can be constructed in O(n) time, the whole algorithm uses f(n) + O(n) time to solve the counting inversion problem.

Problem 6. We can trivially encode each letter in $\log_2 n$ bits: assign the $\log_2 n$ -bith binary representation of i to the *i*-th letter for each $i \in [1, n]$. This gives a prefix code whose average length is $\log_2 n$. As Huffman's algorithm constructs an optimal prefix code, the code's average length must be at most $\log_2 n$.

Problem 7.

$$\operatorname{opt}(n) = \begin{cases} 0 & \text{if } n = 0\\ \max\{P[n], (-c) + \max_{i=1}^{n-1}(P[i] + \operatorname{opt}(n-i))\} & \text{otherwise} \end{cases}$$
(1)

Problem 8. This problem can be converted to k-selection. First, find the median m of S in O(n) expected time. Then, construct a set $T = \{|x - m| \mid x \in S\}$. Finally, use k-selection to find the k-th smallest number of T in O(n) expected time. If |x - m| is the number returned, then output every $y \in S$ satisfying $|y - m| \le |x - m|$.

Problem 9. Let $I_1, I_2, ..., I_t$ be the sequence of intervals picked by the algorithm. We will prove the claim: for each $i \in [1, t]$, there is an optimal solution containing $\{I_1, I_2, ..., I_i\}$.

To prove the base case (i = 1), notice that I_1 must be the longest interval in \mathcal{I} starting from 0. Take an arbitrary optimal solution T. Clearly, T must contain an interval I' covering 0. Replacing I' with I_1 gives another optimal solution.

Assuming that the claim holds for i = k < t, next we will prove its correctness for i = k + 1. Let T be an arbitrary optimal solution containing $I_1, I_2, ..., I_k$. Consider the value a at Line 2 right before our algorithm picks I_{k+1} . Clearly, T must contain an interval I' covering a + 1. Replacing I' with I_{k+1} gives another optimal solution.

Problem 10. First, find the largest element (i.e., the $2^{\log_2 n}$ smallest) of S in O(n) time. Then, use k-selection to find the (n/2)-th smallest element e_1 of S in O(n) expected time. Remove from S all the elements that are greater than e_1 . Now, |S| = n/2. Use k-selection again to find the (n/4)-th smallest element e_2 of S in O(n/2) expected time. Remove from S all the elements that are greater than e_2 . Use k-selection again to find the (n/8)-th smallest element e_3 of S in O(n/8) expected time. Remove from S all the elements that are greater than e_3 . Repeat in the same fashion until S has only one element. The total expected time is O(n) + O(n/2) + O(n/4) + ... + O(1) = O(n).