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Set Cover

We are given a collection S where each member of S comes from a
certain domain (which is not important).

Define the universe U =
⋃

S∈S S .

A sub-collection C ⊆ S is a set cover (of U) if every element of U
appears in at least one set in C.

The set cover problem:
Find a set cover with the smallest size.
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Example: U = {1, 2, ..., 12} and S = {S1,S2, ...,S6} where

S1 = {1, 2, 3}
S2 = {4, 5, 6}
S3 = {2, 3, 4, 5}
S4 = {7, 8, 9, 10}
S5 = {10, 11, 12}
S6 = {8, 9, 10}

An optimal solution is C = {S1,S2,S4,S5}.
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The input size of the set cover problem is n =
∑

S∈S |S |.

The problem is NP-hard.

No one has found an algorithm solving the problem in time
polynomial in n.

Such algorithms cannot exist if P ̸= NP.
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A = an algorithm that, given any legal input S with universe U, returns a
set cover C.

Denote by OPTS the smallest size of all set covers when the input
collection is S.

A is a ρ-approximate algorithm for the set cover problem if,
for any legal input S, A can return a set cover with size at most
ρ · OPTS.

The value ρ is the approximation ratio.
We say that A achieves an approximation ratio of ρ.
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Consider the following algorithm.

Input: A collection S

1. C = ∅
2. while U still has elements not covered by any set in C

3. F ← the set of elements in U not covered by any set in C

/* for each set S ∈ S, define its benefit to be |S ∩ F | */
4. add to C a set in S with the largest benefit
5. return C

It is easy to show:

The C returned is a set cover;

The algorithm runs in time polynomial to n.

We will prove later that the algorithm is (1 + ln |U|)-approximate.
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Example: U = {1, 2, ..., 12}.
S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {2, 3, 4, 5}, S4 = {7, 8, 9, 10},
S5 = {10, 11, 12}, and S6 = {8, 9, 10}.

In the beginning, C = ∅ and F = {1, 2, ..., 12}.

Next, we can add S3 or S4 to C (benefit 4). The choice is
arbitrary; suppose we add S3. Now,
F = {1, 6, 7, 8, 9, 10, 11, 12}.

Next, we can add S4 (benefit 4). Now, F = {1, 6, 11, 12}.

Next, we can add S5 (benefit 2). Now, F = {1, 6}.

Next, we can add S1 or S2 (benefit 1). The choice is
arbitrary; suppose we add S1. Now, F = {6}.

Finally, we add S2. Now, F = ∅.

The algorithm terminates with C = {S1,S2,S3,S4,S5}.
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Theorem 1: The algorithm returns a set cover with size at most
1 + (ln |U|) · OPTS ≤ (1 + ln |U|) · OPTS.
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C = the set cover returned.
t = |C|.

Denote the sets in C as S1,S2, ...,St , picked in the order shown.

For each i ∈ [1, t], define zi as the size of F after Si is picked.
Specially, define z0 = |U|.

zt = 0 and zt−1 ≥ 1. Think: why?

Denote by C∗ an optimal set cover, namely, OPTS = |C∗|.
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We will prove later:

Lemma 1: For i ∈ [1, t], it holds that

zi ≤ zi−1 ·
(
1− 1

OPTS

)
.
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From Lemma 1, we get:

zt−1 ≤ zt−2 ·
(
1− 1

OPTS

)
≤ zt−3 ·

(
1− 1

OPTS

)2

...

≤ z0 ·
(
1− 1

OPTS

)t−1

= |U| ·
(
1− 1

OPTS

)t−1

≤ |U| · e−
t−1

OPTS

where the last inequality used the fact 1 + x ≤ ex for any real value x .

As zt−1 ≥ 1, we have

1 ≤ |U| · e−
t−1

OPTS (1)

which resolves to t ≤ 1 + (ln |U|) · OPTS. This proves Theorem 1.
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Proof of Lemma 1

Before Si is chosen, F has zi−1 elements.

At this moment, at least one set S∗ ∈ C∗ has a benefit at least

zi−1

|C∗|
=

zi−1

OPTS

> 0

(every element of F must appear in some set in C∗).

The set S∗ cannot have been chosen (every chosen set has benefit 0) and
is thus a candidate for Si . It thus follows that Si must have a benefit at
least zi−1

OPTS
(greedy). Therefore:

zi = |F \ Si | = |F | − |F ∩ Si |

≤ zi−1 −
zi−1

OPTS

= zi−1

(
1− 1

OPTS

)
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Next, we will introduce a closely related problem called the hitting
set problem.
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Hitting Set

Let U be a finite set called the universe.

We are given a collection S where each member of S is a set S ⊆ U.

A subset H ⊆ U hits a set S ∈ S if H ∩ S ̸= ∅.
A subset H ⊆ U is a hitting set (of S) if it hits all the sets in S.

The hitting set problem:
Find a hitting set H of the minimize size.
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Example: U = {1, 2, ..., 6} and S = {S1,S2, ...,S12} where

S1 = {1}
S2 = {1, 3}
S3 = {1, 3}
S4 = {2, 3}
S5 = {2, 3}
S6 = {2}
S7 = {4}
S8 = {4, 6}
S9 = {4, 6}
S10 = {4, 5, 6}
S11 = {5}
S12 = {5}

An optimal solution is H = {1, 2, 4, 5}.

Yufei Tao Set Cover and Hitting Set



16/20

The input size of the set cover problem is n =
∑

S∈S |S |.

The problem is NP-hard.

No one has found an algorithm solving the problem in time
polynomial in n.

Such algorithms cannot exist if P ̸= NP.
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A = an algorithm that, given any legal input S with universe U, returns a
hitting set.

Denote by OPTS the smallest size of all hitting sets.

A is a ρ-approximate algorithm for the hitting set problem if,
for any legal input S, A can return a hitting set with size at most
ρ · OPTS.

The value ρ is the approximation ratio.
We say that A achieves an approximation ratio of ρ.
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Hitting set and set cover are essentially the same problem.

Let S be the input to the hitting set problem (recall that S is a collection
of sets). By converting the problem to an instance of set cover, we can
obtain a polynomial-time hitting-set algorithm that guarantees an
approximation ratio of

1 + ln |S|.

The proof is left as a regular exercise, but the next slide illustrates the
key idea behind the conversion.
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Consider the hitting set example on Slide 15. Let us create a bipartite
graph G :

S1

S2

S3

S4

S5

S6

S7

S8

1

2

3

4

5S9

S10

S11

S12

6

Each set S ∈ S corresponds to a vertex on the left of G .
Each element e ∈ U corresponds to a vertex on the right of G .

An edge exists between vertex S and vertex e if and only if e ∈ S .
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Solving the hitting set problem is equivalent to finding a smallest
set R of right vertices such that every left vertex is adjacent to at
least one vertex in R.

This gives rise to the set cover example on Slide 3.
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