Dynamic Programming 2: Rod Cutting

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Dynamic Programming 2: Rod Cutting

1/8

・ロト ・ 同ト ・ ヨト ・ ヨト

The Rod Cutting Problem

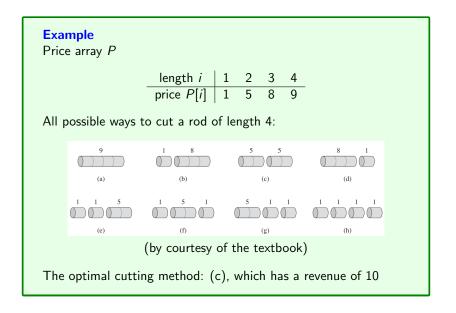
Input:

- a rod of length *n*
- an array P of length n where P[i] is the price for a rod of length i, for each $i \in [1, n]$

Goal: Cut the rod into segments of integer lengths to maximize the revenue.

2/8

4 A N 4 B N 4 B N



Dynamic Programming 2: Rod Cutting

3/8

.

The key to solving the problem is to identify its underlying **recursive structure**.

Specifically, how the original problem is related to subproblems.

The recursive structure will then point to an algorithm based on dynamic programming.

4/8

(4月) (4日) (4日)

Define opt(n) as the optimal revenue from cutting up a rod of length n.

Clearly, opt(0) = 0.

Consider now $n \ge 1$. Let *i* be the length of the first segment.

• *i* can be any integer in [1, x].

Yufei Tao

Conditioned on the first segment having length *i*, the highest revenue attainable is P[i] + opt(n - i).

Therefore:

$$opt(n) = \max_{i=1}^{n} (P[i] + opt(n-i))$$

We have obtained a recursive structure for the problem.

Dynamic Programming 2: Rod Cutting

5/8

4 A N 4 B N 4 B N

Given

$$opt(n) = \max_{i=1}^{n} (P[i] + opt(n-i))$$

we can compute opt(n) in $O(n^2)$ time using dynamic programming (this is the problem solved in the last lecture).

Wait! We need to generate a cutting method to achieve revenue opt(n).

This can be done by recording which subproblem yields opt(n).

See the next slide.

6/8

(日) ・ ヨ ・ ・ ヨ ・

Given

$$opt(n) = \max_{i=1}^{n} (P[i] + opt(n-i))$$

define bestSub(n) = k if maximization is obtained at i = k (i.e., first segment having length k).

Example					
	length <i>i</i>	1	2	3	4
-	price P[i]	1	5	8	9
	opt(i)	1	5	8	10
-	bestSub(i)	1	2	3	2

After we have computed bestSub(i) for every $i \in [1, n]$, the best method for cutting up a rod of length n can be obtained in O(n) time. (Think: why?)

ъ

7/8

For each $i \in [1, n]$, computing bestSub(i) is no more expensive than computing opt(i). This is left as a regular exercise.

We conclude that the rod cutting problem can be solved in $O(n^2)$ time.

The method of using the *bestSub* function to generate an optimal cutting is known as the **piggyback** technique.

8/8