
1/8

Dynamic Programming 2: Rod Cutting

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 2: Rod Cutting



2/8

The Rod Cutting Problem

Input:

a rod of length n

an array P of length n where
P[i ] is the price for a rod of length i , for each i ∈ [1, n]

Goal: Cut the rod into segments of integer lengths to maximize the

revenue.

Yufei Tao Dynamic Programming 2: Rod Cutting



3/8

Example
Price array P

length i 1 2 3 4
price P[i ] 1 5 8 9

All possible ways to cut a rod of length 4:

(by courtesy of the textbook)

The optimal cutting method: (c), which has a revenue of 10

Yufei Tao Dynamic Programming 2: Rod Cutting



4/8

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then point to an algorithm based on dynamic

programming.

Yufei Tao Dynamic Programming 2: Rod Cutting



5/8

Define opt(n) as the optimal revenue from cutting up a rod of length n.

Clearly, opt(0) = 0.

Consider now n ≥ 1.
Let i be the length of the first segment.

i can be any integer in [1, x ].

Conditioned on the first segment having length i , the highest
revenue attainable is P[i ] + opt(n − i).

Therefore:

opt(n) =
n

max
i=1

(P[i ] + opt(n − i))

We have obtained a recursive structure for the problem.

Yufei Tao Dynamic Programming 2: Rod Cutting



6/8

Given

opt(n) =
n

max
i=1

(P[i ] + opt(n − i))

we can compute opt(n) in O(n2) time using dynamic programming (this
is the problem solved in the last lecture).

Wait! We need to generate a cutting method to achieve revenue opt(n).

This can be done by recording which subproblem yields opt(n).

See the next slide.

Yufei Tao Dynamic Programming 2: Rod Cutting



7/8

Given

opt(n) =
n

max
i=1

(P[i ] + opt(n − i))

define bestSub(n) = k if maximization is obtained at i = k (i.e., first
segment having length k).

Example

length i 1 2 3 4

price P[i ] 1 5 8 9
opt(i) 1 5 8 10

bestSub(i) 1 2 3 2

After we have computed bestSub(i) for every i ∈ [1, n], the best method
for cutting up a rod of length n can be obtained in O(n) time.

(Think: why?)

Yufei Tao Dynamic Programming 2: Rod Cutting



8/8

For each i ∈ [1, n], computing bestSub(i) is no more expensive than
computing opt(i). This is left as a regular exercise.

We conclude that the rod cutting problem can be solved in O(n2) time.

The method of using the bestSub function to generate an optimal
cutting is known as the piggyback technique.

Yufei Tao Dynamic Programming 2: Rod Cutting


