Greedy 1: Activity Selection

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

In this lecture, we will commence our discussion of **greedy** algorithms, which enforce a simple strategy: make the **locally optimal** decision at each step. Although this strategy does not always guarantee finding a **globally optimal** solution, sometimes it does. The nontrivial part is to prove (or disprove) the global optimality.

Input: A set S of n intervals of the form [s, f] where s and f are integers. **Output:** A subset T of disjoint intervals in S with the largest size |T|.

Remark: You can think of [s, f] as the duration of an activity, and consider the problem as picking the largest number of activities that do not have time conflicts.

Example: Suppose

$$S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]\}.$$

 $T = \{[3, 7], [15, 17], [18, 22]\}$ is an optimal solution, and so is $T = \{[1, 9], [12, 19], [21, 24]\}$.

Algorithm

Repeat until *S* becomes empty:

- Add to T the interval $\mathcal{I} \in S$ with the smallest finish time.
- Remove from S all the intervals intersecting \mathcal{I} (including \mathcal{I} itself)

Example: Suppose $S = \{[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]\}.$

Let us rearrange the intervals in S in ascending order of finish time: $S = \{[3,7], [1,9], [15,17], [12,19], [6,20], [18,22], [21,24]\}.$

We first add [3,7] to T, after which intervals [3,7], [1,9] and [6,20] are removed. Now S becomes $\{[15,17],[12,19],[18,22],[21,24]\}$. The next interval added to T is [15,17], which shrinks S further to $\{[18,22],[21,24]\}$. After [18,22] is added to T, S becomes empty and the algorithm terminates.

Next, we will prove that the algorithm returns an optimal solution. Let us start with a crucial claim.

Claim 1: Let \mathcal{I}_1 be the first interval picked by our algorithm. There must be an optimal solution containing \mathcal{I}_1 .

Proof: Let T^* be an arbitrary optimal solution. If $\mathcal{I}_1 \in T^*$, Claim 1 is true and we are done. Next, we assume $\mathcal{I}_1 \notin T^*$.

We will turn T^* into another optimal solution T containing \mathcal{I} . For this purpose, first identify the interval \mathcal{I}_1' in T^* with the **smallest** finish time. Construct T as follows: add all the intervals in T^* to T except \mathcal{I}' , and finally add \mathcal{I} to T.

We will prove that all the intervals in T are disjoint. This indicates that T is also an optimal solution, and hence, will complete the proof.

It suffices to prove that \mathcal{I}_1 cannot intersect with any other interval in $\mathcal{J} \in \mathcal{T}$. This is true because

- the start time of \mathcal{J} is after the finish time of \mathcal{I}_1' ;
- the finish time of \mathcal{I}_1 is less than or equal to the finish time of \mathcal{I}'_1 .

1 1 4 4 5 1 4 5 1 4 5 1 4 5 1

Claim 2: Let $\mathcal{I}_1, \mathcal{I}_2, ..., \mathcal{I}_k$ be the first $k \geq 2$ intervals picked by our algorithm (in the order shown). Assume that there is an optimal solution containing $\mathcal{I}_1, ..., \mathcal{I}_{k-1}$. Then, there must exist an optimal solution containing $\mathcal{I}_1, ..., \mathcal{I}_{k-1}, \mathcal{I}_k$.

Proof: Let T^* be an optimal solution containing $\mathcal{I}_1, ..., \mathcal{I}_{k-1}$. Observe:

All the intervals in $T^* \setminus \{\mathcal{I}_1, ..., \mathcal{I}_{k-1}\}$ must start strictly after the finish time of \mathcal{I}_{k-1} .

Think: Why?

If $\mathcal{I}_k \in \mathcal{T}^*$, Claim 2 is true and we are done. Next, we consider the case where $\mathcal{I}_k \notin \mathcal{T}^*$.

Let \mathcal{I}'_k be the interval in $T^* \setminus \{\mathcal{I}_1,...,\mathcal{I}_{k-1}\}$ that has the smallest finish time. Construct a set T of intervals as follows: add all the intervals of T^* to T except \mathcal{I}'_k , and finally add \mathcal{I}_k to T.

To prove that T is an optimal solution, it suffices to prove that \mathcal{I}_k is disjoint with every interval $\mathcal{J} \in T^* \setminus \{\mathcal{I}_1,...,\mathcal{I}_{k-1},\mathcal{I}'_k\}$. This is true because

- the start time of \mathcal{J} is after the finish time of \mathcal{I}'_k ;
- the finish time of \mathcal{I}_k is less than or equal to the finish time of \mathcal{I}'_k .

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

Think: How to implement the algorithm in $O(n \log n)$ time?

Yufei Tao