
Problem 1. F, F, F, F, F, T, T, T, T, T.

Problem 2. Free marks.

Problem 3. First apply k-selection to find the k1-th smallest integer x1 in O(n) expected time.
Then apply k-selection again to find the k2-th smallest integer x2 in O(n) expected time. Then
scan S once more to report all the numbers y ∈ S satisfying x1 ≤ y ≤ x2. The last step takes
O(n) time.

Problem 4. First, compute the set S of all 5-cycles in G. For this purpose, enumerate all
possible sequences (v1, v2, v3, v4, v5) where each vi ∈ V (1 ≤ i ≤ t), and check, for every such
sequence, whether the edges (v1, v2), (v2, v3), (v3, v4), (v4, v5), and (v5, v1) exist in the graph
G. The problem is now converted to finding the smallest set of edges that hit every 5-cycle
in S. This is an instance of the hitting set problem. Now, apply the standard approximation
algorithm.

The running time is clearly polynomial in |V |. The approximation ratio is at most 1+ln |S| =
O(log |V |).

Problem 5. By the white path theorem, the descendants of c in the DFS-forest are: c, b, d, g,
f , and h.

Problem 6. Prof. Goofy’s algorithm runs in O(n102) time. To find a vertex cover with the
smallest size, we can apply his algorithm by setting k = 1, 2, 3, ..., respectively, and stop as soon
as his algorithm returns a vertex cover for the first time. The overall running time is O(n103).

Problem 7. Let OPT(ℓ) be the optimal cost to cut a rod of ℓ meters into segments of 1 meter
long. Thus, OPT(1) = 0. For ℓ ≥ 2, we have:

OPT(ℓ) = A[ℓ] +
ℓ−1
min
i=1

(
OPT(i) + OPT(ℓ− i)

)
.

We may compute OPT(ℓ) in ascending order of ℓ. As it takes O(ℓ) time to compute OPT(ℓ),
the total cost of computing OPT(n) is

∑n
ℓ=1O(ℓ) = O(n2).

Problem 8. First, generate a complete graph (i.e., a clique) G∗ = (S,E∗) where, for any two
distinct vertices u, v ∈ S, the edge {u, v} has a weight that equals the shortest path distance
between u and v in the original graph G. As every shortest path can be computed in polynomial
time, overall the Θ(|S|2) shortest paths can be computed in polynomial time.

Then, the value of OPT corresponds to the shortest length of all Hamitonian cycles of G∗.
Find a Hamitonian cycle C of length 2 ·OPT. This can be done in polynomial time as discussed
in the lecture.

We can now generate an S-round-trip walk from C as follows. For every two consecutive
vertices u, v on C, replace the edge {u, v} with a shortest path from u to v. The walk thus
obtained has the same length as C, which as mentioned is at most 2 ·OPT.

Problem 9. Let fa, fb, fc, fd, and fe denote the frequencies of a, b, c, d, and e, respectively.

a b

c

d

e

x

y

z

1

Observe that the algorithm must have (i) first merged a and b into a node x, (ii) then merged
x and c into a node y, (iii) proceeded to merge y and d into a node z, and (iv) finally merged
z with e. It thus follows that

fc ≥ fa = 1/8 (due to (i)) (1)

fd ≥ fx = fa + fb (due to (ii)) (2)

fe ≥ fy = fa + fb + fc (due to (iii)) (3)

Therefore

1 = fa + fb + fc + fd + fe

≥ 1/8 + 1/8 + fc + (1/8 + 1/8) + (1/8 + 1/8 + fc)

which yiels fc ≤ 1/8. Combining this with (1) gives fc = 1/8.

We argue that fd must be precisely 2/8. First note that (2) indicates fd ≥ 2/8. Thus, if
fd > 2/8, then fe < 1− (1/8 + 1/8 + 1/8 + 2/8) = 3/8, which would contradict (3).

It thus follows that fe = 3/8.

Problem 10. Let T ∗ be an arbitrary MST of G. If e∗ is not in T ∗, we are done. Next, we
consider the opposite scenario where e∗ is in T ∗.

Remoing e∗ from T ∗ breaks T ∗ into two connected components (CCs). Let T1 (resp., T2) be
the first (resp., second) CC. The cycle C must contain another edge e ̸= e∗ such that e connects
a vertex in T1 with a vertex in T2. Connecting T1 and T2 with e gives another tree T whose
total weight cannot exceed that of T ∗. Thus, T must be an MST.

Problem 11. Let us first consider the situation where all the edges of G are non-negative.
Remove from G all the edges whose weights are positive; let G′ be the graph induced by the
remaining edges. Thus, G contains a cycle of weight 0 if and only if G′ has a cycle. We can
detect whether G′ is cyclic using DFS in O(|V |+ |E|) time.

Now let us consider the general situation where G has negative edges. A crucial observation
is that re-weighting does not change the weight of any cycle. Specifically, let h : V → R be an
arbitrary function. If w : E → R be the original weight function of G, construct a new function
w′ : E → R by defining for each edge (u, v) ∈ E:

w′(u, v) = w(u, v) + h(u)− h(v).

Thus, for any cycle u1, u2, ..., ut, u1, its weight under w
′ equals

w′(ut, u1) +

t−1∑
i=1

w′(ui, ui+1)

which can be easily verified to be

w(ut, u1) +

t−1∑
i=1

w(ui, ui+1)

namely, the cycle’s weight under w.

Therefore, the problem boils down to finding a function h that makes w′(u, v) ≥ 0 for all
edges (u, v) ∈ E. As G has no negative cycles, such a function h can be found in O(|V ||E|)
time, as discussed in the lecture (Johnson’s algorithm).

2

