CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1*. Prove the correctness of Dijkstra's algorithm (when the edges have non-negative weights).

Problem 2. Consider again your proof for Problem 1. Point out the place that requires edge weights to be non-negative.

Problem 3. Consider a directed simple graph G = (V, E) where each edge $e \in E$ has an arbitrary weight w(e) (which can be negative). It is known that G does not have negative cycles. Prove: given any vertices $s, t \in V$, at least one shortest path from s to t is a simple path (i.e., no vertex appears twice on the path).

Remark: This implies that the path must have at most |V| - 1 edges.

Problem 4* (SSSP in a DAG). Consider a simple acyclic directed graph G = (V, E) where each edge $e \in E$ has an arbitrary weight w(e) (which can be negative). Solve the SSSP problem on G in O(|V| + |E|) time.

Problem 5. Let G = (V, E) be a simple directed graph where each edge $e \in E$ carries a weight w(e), which can be negative. It is guaranteed that G has no negative cycles. Prove: given any vertices $s, t \in V$, at least one shortest path from s to t is a simple path (i.e., no vertex appears twice on the path).

Problem 6.** Let G = (V, E) be a simple directed graph where the weight of an edge (u, v) is w(u, v). Prove: the following algorithm correctly decides whether G has a negative cycle.

algorithm negative-cycle-detection

- 1. pick an arbitrary vertex $s \in V$
- 2. initialize dist(s) = 0 and $dist(v) = \infty$ for every other vertex $v \in V$
- 3. for i = 1 to |V| 1
- 4. relax all the edges in E
- 5. for each edge $(u, v) \in E$
- 6. **if** dist(v) > dist(u) + w(u, v) **then**
- 7. **return** "there is a negative cycle"
- 8. return "no negative cycles"

Problem 7. Let G = (V, E) be a simple directed graph where every edge (u, v) carries a weight w(u, v), which can be negative. G has no negative cycles. Recall that Johnson's algorithm adds a vertex v_{dummy} , as well as some out-going edges of v_{dummy} , to G and computes the shortest path distance $spdist(v_{dummy}, v)$ from v_{dummy} to every vertex. Then, the weight of each edge (u, v) is modified to:

$$w'(u, v) = w(u, v) + spdist(v_{dummy}, u) - spdist(v_{dummy}, v).$$

Prove: $w'(u, v) \ge 0$.

Problem 8. Let G = (V, E) be a simple directed graph where every edge (u, v) carries a *non-negative* weight w(u, v). Apply Johnson's algorithm to compute a new weight w'(u, v) for each edge $(u, v) \in E$. Prove: w'(u, v) = w(u, v).