CSCI3160: Finding a Negative Cycle

Prepared by Yufei Tao
Suppose that $G=(V, E)$ is a simple directed graph where each edge $(u, v) \in E$ has a weight $w(u, v)$, which can be negative. It is known that G is strongly connected and contains at least one negative cycle. In the tutorial, we learned the following algorithm for finding a negative cycle:
algorithm negative-cycle-detection
input: strongly connected $G=(V, E)$ and weight function w
$s \leftarrow$ arbitrary vertex in V
$\operatorname{dist}(s) \leftarrow 0$ and $\operatorname{dist}(v) \leftarrow \infty$ for every vertex $v \in V \backslash\{s\}$
parent $(v) \leftarrow$ nil for all $v \in V$
for $i \leftarrow 1$ to $|V|-1$ do
5. for each edge $(u, v) \in E$ do
6. if $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u, v)$ then
7. $\quad \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u, v) ; \operatorname{parent}(v) \leftarrow u$
8. for each edge $(u, v) \in E$ do
9. if $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u, v)$ then
10. $\quad \operatorname{parent}(v) \leftarrow u$
/* start tracing back the parent pointers until seeing a vertex twice */
11. initialize a vertex sequence S that contains only v
12. \quad while $\operatorname{parent}(v) \notin S$ do
13. \quad append $\operatorname{parent}(v)$ to $S ; v \leftarrow \operatorname{parent}(v)$
14. \quad report a negative cycle: output the appendix of S starting from v and add v in the end

Next, we prove that the algorithm is correct.
Lemma 1. During the algorithm, if u is a vertex in V with parent $(u) \neq$ nil, then $\operatorname{dist}(\operatorname{parent}(u))+$ $w(\operatorname{parent}(u), u)<=\operatorname{dist}(u)$.
Proof. Let $z=\operatorname{parent}(u)$. When z just becomes parent $(u), \operatorname{dist}(z)+w(z, u)=\operatorname{dist}(u)$. After that, $\operatorname{dist}(z)$ can only decrease, while $\operatorname{dist}(u)$ stays the same until parent (u) is updated.

Lemma 2. Suppose that there is a sequence of $x \geq 2$ vertices $u_{1}, u_{2}, \ldots, u_{x}$ such that parent $\left(u_{i}\right)=$ u_{i+1} for every $i \in[1, x-1]$ and parent $\left(u_{x}\right)=u_{1}$. Then, $\left(u_{1}, u_{x}\right),\left(u_{2}, u_{1}\right),\left(u_{3}, u_{2}\right), \ldots,\left(u_{x}, u_{x-1}\right)$ form a negative cycle.

Proof. Each of parent $\left(u_{1}\right)$, parent $\left(u_{2}\right), \ldots, \operatorname{parent}\left(u_{x}\right)$ was set by an edge relaxation. W.l.o.g., suppose that the edge relaxation for parent $\left(u_{1}\right)$ happened the latest. Consider the moment right before the relaxation. At this moment, we must have

$$
\operatorname{dist}\left(u_{2}\right)+w\left(u_{2}, u_{1}\right)<\operatorname{dist}\left(u_{1}\right)
$$

By Lemma 1, we have

$$
\begin{array}{r}
\operatorname{dist}\left(u_{3}\right)+w\left(u_{3}, u_{2}\right) \leq \operatorname{dist}\left(u_{2}\right) \\
\operatorname{dist}\left(u_{4}\right)+w\left(u_{4}, u_{3}\right) \leq \operatorname{dist}\left(u_{3}\right)
\end{array}
$$

$$
\begin{aligned}
\operatorname{dist}\left(u_{x}\right)+w\left(u_{x}, u_{x-1}\right) & \leq \operatorname{dist}\left(u_{x-1}\right) \\
\operatorname{dist}\left(u_{1}\right)+w\left(u_{1}, u_{x}\right) & \leq \operatorname{dist}\left(u_{1}\right)
\end{aligned}
$$

The above inequalities imply $w\left(u_{x}, u_{1}\right)+\sum_{i=1}^{x} w\left(u_{i}, u_{i+1}\right)<0$.
Lemma 3. Consider the moment when the algorithm has come to Line 11. At this moment, if we continuously trace the parent pointers starting from v, we encounter an infinite loop.

Proof. Suppose that this is not true. Then, the tracing must stop at s because every node - except possibly s - has a parent. This yields a simple path π from s to v. Denote by ℓ the number of edges on π; clearly, $\ell \leq|V|-1$. Denote the vertices on π as $z_{0}, z_{1}, \ldots, z_{\ell}$, where $z_{0}=s$ and $z_{\ell}=v$. Let d_{i} be the value of $\operatorname{dist}\left(z_{i}\right)$ at this moment, for each $i \in[0, \ell]$. Let us make several observations:

- parent $\left(z_{i}\right)=z_{i-1}$ for all $i \in[1, \ell]$, but $\operatorname{parent}\left(z_{0}\right)=$ nil.
- The fact $\operatorname{parent}(s)=$ nil implies $d_{0}=0$. To see why, recall that $\operatorname{dist}(s)$ is set to 0 at the beginning of the algorithm. Thus, if $d_{0} \neq 0$, then $\operatorname{dist}(s)$ must have been decreased during the algorithm's execution, in which case parent (s) cannot be nil.
- For each $i \in[1, \ell], d_{i} \geq d_{i-1}+w\left(z_{i-1}, z_{i}\right)$. At the moment when $\operatorname{dist}\left(z_{i}\right)$ was reduced to d_{i} (which must be due to the relaxation of $\left(z_{i-1}, z_{i}\right)$), it held that $d_{i}=\operatorname{dist}\left(z_{i}\right)=\operatorname{dist}\left(z_{i-1}\right)+$ $w\left(z_{i-1}, z_{i}\right)$. The value of $\operatorname{dist}\left(z_{i-1}\right)$ could then only decrease after that, which implies $d_{i} \geq$ $d_{i-1}+w\left(z_{i-1}, z_{i}\right)$.

Claim: For each $i \in[1, \ell]$, we have

- $d_{i}=\sum_{i=1}^{\ell} w\left(z_{i-1}, z_{i}\right)$, and
- the value of $\operatorname{dist}\left(z_{i}\right)$ was exactly d_{i} at the end of the i-th round (and hence has remained so till the end of the algorithm).

We will prove the claim by induction. For the base case, the claim becomes $\operatorname{dist}\left(z_{1}\right)=d_{1}=$ $w\left(s, z_{1}\right)$ at the end of the first round. Right after the edge $\left(s, z_{1}\right)$ was relaxed in the first round, it held that $\operatorname{dist}\left(z_{1}\right)=w\left(s, z_{1}\right)$. In the rest of the algorithm, $\operatorname{dist}\left(z_{1}\right)$ could only decrease, indicating that $d_{1} \leq w\left(s, z_{1}\right)$. On the other hand, as observed earlier, we have $d_{1} \geq w\left(s, z_{1}\right)$. Therefore, it must hold that $d_{1}=w\left(s, z_{1}\right)$, and the value of $\operatorname{dist}\left(z_{1}\right)$ was $w\left(s, z_{1}\right)$ at the end of the first round.

Assuming the claim's correctness for $i \leq k$, next we will prove the claim for $i=k+1$. By the inductive assumption, $\operatorname{dist}\left(z_{k}\right)=d_{k}=\sum_{i=1}^{k} w\left(z_{i-1}, z_{i}\right)$ at the end of the k-th round. Right after the edge $\left(z_{k}, z_{k+1}\right)$ was relaxed in the $(k+1)$-th round, it held that $\operatorname{dist}\left(z_{k+1}\right)=\operatorname{dist}\left(z_{k}\right)+w\left(z_{k}, z_{k+1}\right)=$ $d_{k}+w\left(z_{k}, z_{k+1}\right)$. In the rest of the algorithm, $\operatorname{dist}\left(z_{k+1}\right)$ could only decrease, indicating that $d_{k+1} \leq d_{k}+w\left(z_{k}, z_{k+1}\right)$. On the other hand, as observed earlier, we have $d_{k+1} \geq d_{k}+w\left(z_{k}, z_{k+1}\right)$. Therefore, it must hold that $d_{k+1}=d_{k}+w\left(z_{k}, z_{k+1}\right)=\sum_{i=1}^{k+1} w\left(z_{i-1}, z_{i}\right)$, and the value of $\operatorname{dist}\left(z_{k+1}\right)$ was d_{k+1} at the end of the $(k+1)$-th round. This completes the proof of the claim.

However, according to the claim, the edge relaxation at Line 9 should not have happened. This gives a contradiction, indicating that our initial assumption (that the lemma is wrong) cannot be true.

The algorithm's correctness follows from Lemmas 2 and 3.

