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Let’s first go over the DFS algorithm through an example.

Input

a

c f b

d
e

g

Suppose we start from the vertex a, namely a is the root of DFS tree.
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DFS

Firstly, set all the vertices to be white. Then, create a stack S , push the
starting vertex a into S and color it gray. Create a DFS Tree with a as
the root. We also maintain the time interval I (u) of each vertex u.

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]

S = (a).
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DFS

Top of stack: a, which has white out-neighbors b, c , f . Suppose we
access c first. Push c into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]

S = (a, c).
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DFS

After pushing d into S :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

S = (a, c , d).
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DFS

Now d tops the stack. It has white out-neighbors e, f and g . Suppose
we visit g first. Push g into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4,  ]

S = (a, c , d , g).
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DFS

After pushing e into S :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4,  ]

e I(e) = [5,  ]

S = (a, c , d , g , e).
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DFS

e has no white out-neighbors. So pop it from S , and color it black.
Similarly, g has no white out-neighbors. Pop it from S , and color it black.

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4, 7]

e I(e) = [5, 6]

S = (a, c , d).
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DFS

Now d tops the stack again. It still has a white out-neighbor f . So, push
f into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2,  ]
d I(d) = [3,  ]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8,  ]

f

S = (a, c , d , f ).

DFS and the Proof of White Path Theorem



10/19

DFS

After popping f , d , c :

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

S = (a).
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DFS

Now a tops the stack again. It still has a white out-neighbor b. So, push
b into S .

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1,  ]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12,  ]

S = (a, b).
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DFS

After popping b and a:

a

c f b

d
e

g

DFS Tree Time Interval

a I(a) = [1, 14]
c I(c) = [2, 11]
d I(d) = [3, 10]

g I(g) = [4, 7]

e I(e) = [5, 6]

I(f) = [8, 9]

f

b

I(b) = [12, 13]

S = ().

Now, there is no white vertex remaining, our algorithm terminates.
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Recall:

White Path Theorem: Let u be a vertex in G . Consider the
moment when u is pushed into the stack in the DFS algorithm.
Then, a vertex v becomes a proper descendant of u in the DFS-
forest if and only if the following is true:

we can go from u to v by travelling only on white vertices.
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Example

a

b

c

d
e

f

g

S = a

DFS Tree
a

Final DFS Tree
a

c b

d

g

e

f

c

c
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Lemma 1: Consider any two distinct vertices u and v in a DFS-
tree. If v is a descendant of u in a DFS-tree, then v enters the
stack while u is in the stack.

The proof is left to you.

u

v

⇒

v

u
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Lemma 2: Consider any two distinct vertices u and v in a DFS-
tree. If v enters the stack while u is in the stack, then v is a
descendant of u in a DFS-tree.

The proof is left to you.

⇒

u

v

v

u
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Proof of White Path Theorem

White Path Theorem: Let u be a vertex in G . Consider the
moment when u is pushed into the stack in the DFS algorithm.
Then, a vertex v becomes a proper descendant of u in the DFS-
forest if and only if the following is true:

we can go from u to v by travelling only on white vertices.

Proof: The “only-if direction” (⇒): Let v be a descendant of u in the
DFS tree. Let π be the path from u to v in the tree. By Lemma 1, all
the nodes on π entered the stack after u. Hence, π must be white at the
moment when u enters the stack.
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Proof of White Path Theorem

The “if direction” (⇐): When u enters the stack, there is a white path π
from u to v . We will prove that all the vertices on π must be
descendants of u in the DFS-forest.

Suppose that this is not true. Let v ′ be the first vertex on π — in the
order from u to v — that is not a descendant of u in the DFS-forest.
Clearly v ′ ̸= u. Let u′ be the vertex that precedes v ′ on π; note that u′ is
a descendant of u in the DFS-forest.

u vu' v'

π

By Lemma 2, u′ entered the stack after u.
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Proof of White Path Theorem

u vu' v'

π

Consider the moment when u′ turns black (i.e., u′ leaving the stack).
Node u must remain in the stack currently (first in last out).

1 The color of v ′ cannot be white.

Otherwise, v ′ is a white out-neighbor of u, which contradicts the
fact that u′ is turning black.

2 Hence, the color of v ′ must be gray or black.

Recall that when u entered stack, v ′ was white. Therefore, v ′ must
have been pushed into the stack while u was still in the stack. By
the lemma on Slide 16, v ′ must be a descendant of u. This,
however, contradicts the definition of v ′.
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