
1/11

Dynamic Programming:
Matrix-Chain Multiplication

Yufei Tao’s Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

Dynamic Programming: Matrix-Chain Multiplication



2/11

Matrix-Chain Multiplication

You are given an algorithm A that, given an a× b matrix A and a b × c
matrix B, can calculate AB in O(abc) time. You need to use A to
calculate the product of A1A2...An where Ai is an ai × bi matrix for
i ∈ [1, n]. This implies that bi−1 = ai for i ∈ [2, n], and the final result is
an a1 × bn matrix.

A trivial strategy is to apply A to evaluate the product from left
to right. However, we may be able to reduce the cost by following
a different multiplication order.

Dynamic Programming: Matrix-Chain Multiplication



3/11

Example

Consider A1A2A3 where A1 and A2 are m×m matrices, but A3 is
m × 1.

There are two multiplication orders:

(A1A2)A3.
The cost of computing B = A1A2 is O(m · m · m) =
O(m3) and B is an m ×m matrix. The cost of BA3 is
O(m ·m · 1) = O(m2). The total cost is O(m3).

A1(A2A3).
The cost of computing B = A2A3 is O(m · m · 1) = O(m2)
and B is an m × 1 matrix. The cost of A1B is
O(m ·m · 1) = O(m2). The total cost is O(m2).

Dynamic Programming: Matrix-Chain Multiplication



4/11

Parenthesizing A1A2...An at Ak for some k ∈ [1, n − 1] converts the
expression to (A1...Ak)(Ak+1...An), after which you can parenthesize
each of A1...Ai and Ai+1...An recursively.

A fully parenthesized product is

either a single matrix or

the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A4 are fully
parenthesized, but A1(A2A3A4) is not.

A fully parenthesized product determines a multiplication order that, in
turn, determines the computation cost.

Goal: Design an algorithm to find in O(n3) time a fully parenthe-
sized product with the smallest cost.

Dynamic Programming: Matrix-Chain Multiplication



5/11

Recursive Structure

By parenthesizing at Ak , we obtain

(A1...Ak)︸ ︷︷ ︸
B1

(Ak+1...An)︸ ︷︷ ︸
B2

,

where B1 is an a1 × bk matrix and B2 is an ak+1 × bn matrix.

The total cost is

cost of computing B1 + cost of computing B2 + O(a1bkbn).

Dynamic Programming: Matrix-Chain Multiplication



6/11

We define cost(i , j), where 1 ≤ i ≤ j ≤ n, to be the smallest achievable
cost for calculating Ai ...Aj . Our objective is to calculate cost(1, n).

If we parenthesize Ai ...Aj at Ak , we obtain

(Ai ...Ak)︸ ︷︷ ︸
cost(i,k)

(Ak+1...Aj)︸ ︷︷ ︸
cost(k+1, j)

.

The total cost is

cost(i , k) + cost(k + 1, j) + O(aibkbj).

Dynamic Programming: Matrix-Chain Multiplication



7/11

To attain cost(i , j), we should try all possible parenthesizations of
Ai ...Aj . This implies:

cost(i , j) ={
O(1) if i = j

minj−1
k=i (cost(i , k) + cost(k + 1, j) + O(aibkbj)) if i < j

By dyn. programming, we can compute cost(1, n) in O(n3) time.

Dynamic Programming: Matrix-Chain Multiplication



8/11

Consider A1A2A3A4 where A1 and A2 are m ×m matrices, A3 is m × 1,
and A4 is 1×m.

i
1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

cost(1, 4)

Dynamic Programming: Matrix-Chain Multiplication



9/11

After solving all subproblems, we obtain:

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

Next, we apply the “piggyback technique” to generate an optimal

parenthesization.

Dynamic Programming: Matrix-Chain Multiplication



10/11

Define bestSub(i , j) =

nil, if i = j ;

k, if the best parenthesization for AiAi+1...Aj is
(Ai ...Ak)(Ak+1...Aj).

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

After cost(i , j) is ready for all i , j , we can compute all bestSub(i , j) in
O(n3) time.

Dynamic Programming: Matrix-Chain Multiplication



11/11

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

A1: m ×m
A2: m ×m
A3: m × 1
A4: 1×m

Example:
bestSub(1, 4) = 3, i.e., the best way to calculate A1A2A3A4 is
(A1A2A3)A4.

Similarly, bestSub(1, 3) = 1, i.e., the best way to calculate A1A2A3

is A1(A2A3).

Therefore, an optimal fully parenthesized product of A1A2A3A4 is
(A1(A2A3))A4.

Dynamic Programming: Matrix-Chain Multiplication


