Dynamic Programming: Matrix-Chain Multiplication

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

Matrix-Chain Multiplication

You are given an algorithm \mathcal{A} that, given an $a \times b$ matrix \boldsymbol{A} and a $b \times c$ matrix \boldsymbol{B}, can calculate $\boldsymbol{A} \boldsymbol{B}$ in $O(a b c)$ time. You need to use \mathcal{A} to calculate the product of $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$ where \boldsymbol{A}_{i} is an $a_{i} \times b_{i}$ matrix for $i \in[1, n]$. This implies that $b_{i-1}=a_{i}$ for $i \in[2, n]$, and the final result is an $a_{1} \times b_{n}$ matrix.

A trivial strategy is to apply \mathcal{A} to evaluate the product from left to right. However, we may be able to reduce the cost by following a different multiplication order.

Example

Consider $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \boldsymbol{A}_{3}$ where \boldsymbol{A}_{1} and \boldsymbol{A}_{2} are $m \times m$ matrices, but \boldsymbol{A}_{3} is $m \times 1$.

There are two multiplication orders:

- $\left(A_{1} A_{2}\right) A_{3}$.

The cost of computing $\boldsymbol{B}=\boldsymbol{A}_{1} \boldsymbol{A}_{2}$ is $O(m \cdot m \cdot m)=$ $O\left(m^{3}\right)$ and \boldsymbol{B} is an $m \times m$ matrix. The cost of $\boldsymbol{B} \boldsymbol{A}_{3}$ is $O(m \cdot m \cdot 1)=O\left(m^{2}\right)$. The total cost is $O\left(m^{3}\right)$.

- $\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3}\right)$.

The cost of computing $\boldsymbol{B}=\boldsymbol{A}_{2} \boldsymbol{A}_{3}$ is $O(m \cdot m \cdot 1)=O\left(m^{2}\right)$ and \boldsymbol{B} is an $m \times 1$ matrix. The cost of $\boldsymbol{A}_{1} \boldsymbol{B}$ is $O(m \cdot m \cdot 1)=O\left(m^{2}\right)$. The total cost is $O\left(m^{2}\right)$.

Parenthesizing $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{n}$ at \boldsymbol{A}_{k} for some $k \in[1, n-1]$ converts the expression to $\left(\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{k}\right)\left(\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{n}\right)$, after which you can parenthesize each of $\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{i}$ and $\boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{n}$ recursively.

A fully parenthesized product is

- either a single matrix or
- the product of two fully parenthesized products.

For example, if $n=4$, then $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ and $\left(\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right) \boldsymbol{A}_{3}\right) \boldsymbol{A}_{4}$ are fully parenthesized, but $\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3} \boldsymbol{A}_{4}\right)$ is not.

A fully parenthesized product determines a multiplication order that, in turn, determines the computation cost.

Goal: Design an algorithm to find in $O\left(n^{3}\right)$ time a fully parenthesized product with the smallest cost.

Recursive Structure

By parenthesizing at \boldsymbol{A}_{k}, we obtain

$$
\underbrace{\left(\boldsymbol{A}_{1} \ldots \boldsymbol{A}_{k}\right)}_{\boldsymbol{B}_{1}} \underbrace{\left(\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{n}\right)}_{\boldsymbol{B}_{2}}
$$

where \boldsymbol{B}_{1} is an $a_{1} \times b_{k}$ matrix and \boldsymbol{B}_{2} is an $a_{k+1} \times b_{n}$ matrix.

The total cost is
cost of computing $\boldsymbol{B}_{1}+$ cost of computing $\boldsymbol{B}_{2}+O\left(a_{1} b_{k} b_{n}\right)$.

We define $\operatorname{cost}(i, j)$, where $1 \leq i \leq j \leq n$, to be the smallest achievable cost for calculating $\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{j}$. Our objective is to calculate $\operatorname{cost}(1, n)$.

If we parenthesize $\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{j}$ at \boldsymbol{A}_{k}, we obtain

$$
\underbrace{\left(\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{k}\right)}_{\text {cost }(i, k)} \underbrace{\left(\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{j}\right)}_{\operatorname{cost}(k+1, j)} .
$$

The total cost is

$$
\operatorname{cost}(i, k)+\operatorname{cost}(k+1, j)+O\left(a_{i} b_{k} b_{j}\right) .
$$

To attain cost (i, j), we should try all possible parenthesizations of $\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{\boldsymbol{j}}$. This implies:

$$
\begin{aligned}
& \operatorname{cost}(i, j)= \\
& \begin{cases}O(1) & \text { if } i=j \\
\min _{k=i}^{j-1}\left(\operatorname{cost}(i, k)+\operatorname{cost}(k+1, j)+O\left(a_{i} b_{k} b_{j}\right)\right) & \text { if } i<j\end{cases}
\end{aligned}
$$

By dyn. programming, we can compute $\operatorname{cost}(1, n)$ in $O\left(n^{3}\right)$ time.

Consider $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \boldsymbol{A}_{3} \boldsymbol{A}_{4}$ where \boldsymbol{A}_{1} and \boldsymbol{A}_{2} are $m \times m$ matrices, \boldsymbol{A}_{3} is $m \times 1$, and \boldsymbol{A}_{4} is $1 \times m$.

After solving all subproblems, we obtain:

	1	2	3	4
1	O (1)	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$
2	0	$O(1)$	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$
3	0	0	$O(1)$	$O\left(m^{2}\right)$
4	0	0	0	$O(1)$

Next, we apply the "piggyback technique" to generate an optimal parenthesization.

Define bestSub $(i, j)=$

- nil, if $i=j$;
- k, if the best parenthesization for $\boldsymbol{A}_{i} \boldsymbol{A}_{i+1} \ldots \boldsymbol{A}_{j}$ is
$\left(\boldsymbol{A}_{i} \ldots \boldsymbol{A}_{k}\right)\left(\boldsymbol{A}_{k+1} \ldots \boldsymbol{A}_{j}\right)$.

	1	2	3	4
1	O (1)	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$
2	0	O (1)	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$
3	0	0	O (1)	$O\left(m^{2}\right)$
4	0	0	0	$O(1)$

After $\operatorname{cost}(i, j)$ is ready for all i, j, we can compute all $\operatorname{bestSub}(i, j)$ in $O\left(n^{3}\right)$ time.

	1	2	3	4	$\begin{aligned} & \boldsymbol{A}_{1}: m \times m \\ & \boldsymbol{A}_{2}: m \times m \\ & \boldsymbol{A}_{3}: m \times 1 \end{aligned}$
1	O (1)	$O\left(m^{3}\right)$	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$	
2	0	$O(1)$	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$	
3	0	0	$O(1)$	$O\left(m^{2}\right)$	$\boldsymbol{A}_{4}: 1 \times m$
4	0	0	0	$O(1)$	

Example:

$\operatorname{bestSub}(1,4)=3$, i.e., the best way to calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{3} \boldsymbol{A}_{4}$ is $\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2} \boldsymbol{A}_{3}\right) \boldsymbol{A}_{4}$.

Similarly, bestSub(1,3)=1, i.e., the best way to calculate $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \boldsymbol{A}_{3}$ is $\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3}\right)$.

Therefore, an optimal fully parenthesized product of $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \boldsymbol{A}_{3} \boldsymbol{A}_{4}$ is $\left(\boldsymbol{A}_{1}\left(\boldsymbol{A}_{2} \boldsymbol{A}_{3}\right)\right) \boldsymbol{A}_{4}$.

