Dynamic Programming: Piggyback, Dependency, and Space

Yufei Tao's Teaching Team
Department of Computer Science and Engineering
Chinese University of Hong Kong

Principle of Dynamic Programming

- Remember the output of every subproblem to avoid re-computation.
- Resolve subproblems according to an appropriate order.

Problem 2 (Regular List 6)

In the lecture, we derived for the rod cutting problem:

$$
\operatorname{opt}(n)=\max _{i=1}^{n}(P[i]+\operatorname{opt}(n-i))
$$

Define $\operatorname{bestSub}(n)=k$ if the above maximization is obtained at $i=k$.

Example

length i	1	2	3	4
price $P[i]$	1	5	8	9
opt (i)	1	5	8	10
bestSub (i)	1	2	3	2

How to compute bestSub(1), $\operatorname{bestSub}(2), \ldots, \operatorname{bestSub}(n)$ in $O\left(n^{2}\right)$ time?

Solution

First, compute opt(1), opt(2), $\ldots, \operatorname{opt}(n)$ in $O\left(n^{2}\right)$ time, as discussed in the lecture.

For each $t \in[1, n]$, compute $\operatorname{bestSub}(t)$ as follows:

- Identify the $k \in[1, k]$ maximizing $P[k]+o p t(t-k)$.
- This takes $O(t)$ time.
- Set bestSub $(t)=k$.

Doing so for all $t \in[1, n]$ takes $O\left(n^{2}\right)$ time.
The idea of computing $\operatorname{best} \operatorname{Sub}(t)$ for all $t \in[1, n]$ is called the piggyback technique.

Problem 2 (cont.)

In the lecture, we derived for the rod cutting problem:

$$
\operatorname{opt}(n)=\max _{i=1}^{n}(P[i]+\operatorname{opt}(n-i))
$$

Define best $S u b(n)=k$ if the above maximization is obtained at $i=k$.

Suppose that we have already computed bestSub(1), bestSub(2), ..., bestSub(n). How do we output an optimal cutting method - namely, a sequence of lengths achieving the maximum revenue - in $O(n)$ time?

Solution

1. $\ell \leftarrow n$
2. while $\ell>0$ do
3. output "length bestSub (ℓ) "
4. $\quad \ell \leftarrow \ell$ - bestSub (ℓ)

Example

length i	1	2	3	4
price $P[i]$	1	5	8	9
opt (i)	1	5	8	10
bestSub (i)	1	2	3	2

Output:
length 2
length 2

Problem 3 (Regular List 6)

Let A be an array of n integers. Define function $f(a, b)$ - where $a \in[1, n]$ and $b \in[1, n]$ - as follows:

$$
f(a, b)= \begin{cases}0 & \text { if } a \geq b \\ \left(\sum_{c=a}^{b} A[c]\right)+\min _{c=a+1}^{b-1}\{f(a, c)+f(c, b)\} & \text { otherwise }\end{cases}
$$

Design an algorithm to calculate $f(1, n)$ in $O\left(n^{3}\right)$ time.

Solution

List all the subproblems.

Solution
$f(a, b)=0$ when $a \geq b$.

Solution

$f(a, b)=\left(\sum_{c=a}^{b} A[c]\right)+\min _{c=a+1}^{b-1}\{f(a, c)+f(c, b)\}$ when $a<b$.
Find out the dependency relationships.

Solution

$f(a, b)=\left(\sum_{c=a}^{b} A[c]\right)+\min _{c=a+1}^{b-1}\{f(a, c)+f(c, b)\}$ when $a<b$.
Let us start with the gray cells - they correspond to $f(a, b)$ where $a=b-1$. These cells depend on no other cells.

Solution

Let us continue with the green cells - they correspond to $f(a, b)$ where $a=b-2$. Every such cell depends on two gray cells, which have already been computed.

Solution

Let us continue with the red cells - they correspond to $f(a, b)$ where $a=b-3$. Every such cell depends on two gray cells and two green cells, all of which have been computed.

Solution

The order can be summarized as follows.

- All cells $f(a, b)$ with $b-a=1$, each computed in $O(1)$ time.
- All cells $f(a, b)$ with $b-a=2$, each computed in $O(2)$ time.
- ...
- All cells $f(a, b)$ with $b-a=k$, each computed in $O(k)$ time.
- ...
- All cells $f(a, b)$ with $b-a=n-1$, each computed in $O(n-1)$ time.

There are $O\left(n^{2}\right)$ values to calculate.
Total time complexity $=O\left(n^{3}\right)$.

Problem 4 (Space Consumption)

In Lecture Notes 8, our algorithm for computing $f(n, m)$ used $O(n m)$ space. Next, we will reduce the space complexity to $O(n+m)$.

Recall the dependency graph:

Solution

We can calculate the values in the row-major order, i.e., row 0 to row 3 and left to right in each row. We used $O(m n)$ space because we stored all the values. Observe, however, that only two rows need to be stored at any moment.

Solution

Same idea for the column-major order.

So the space complexity is $O(\min \{m, n\})$, in addition to the $O(n+m)$ space needed to store x and y.

Think: Can this trick be used to reduce the space in Problem 2?

