Minimum Spanning Trees

\square Problem

- Given a connected undirected weighted graph (G, w) with $G=(V, E)$, the goal of the minimum spanning tree (MST) problem is to find a spanning tree of the smallest cost.
- How to implement Prim's algorithm in $\mathrm{O}((|V|+|E|) \cdot \log |V|)$ time?

Let $G=(V, E)$ be a connected undirected graph. Let w be a function that maps each edge e of G to a positive integer $w(e)$ called the weight of e.

A spanning tree T is a tree satisfying the following conditions:

- The vertex set of T is V.
- Every edge of T is an edge in G.

The cost of T is the sum of the weights of all the edges in T.

Example

The second row shows three spanning trees. The cost of the first two trees is 37, and that of the right tree is 48 .

Prim's algorithm

The algorithm grows a tree $T_{m s t}$ by including one vertex at a time. At any moment, it divides the vertex set V into two parts:

- The set S of vertices that are already in $T_{m s t}$.
- The set of other vertices: $V \backslash S$.

At the end of the algorithm, $S=V$.
If an edge connects a vertex in V and a vertex in $V \backslash S$, we call it an cross edge.

Prim's algorithm

The algorithm grows a tree $T_{m s t}$ by including one vertex at a time. At any moment, it divides the vertex set V into two parts:

- The set S of vertices that are already in $T_{m s t}$.
- The set of other vertices: $V \backslash S$.

At the end of the algorithm, $S=V$.
If an edge connects a vertex in V and a vertex in $V \backslash S$, we call it an cross edge.

Prim's algorithm

The algorithm grows a tree $T_{m s t}$ by including one vertex at a time. At any moment, it divides the vertex set V into two parts:

- The set S of vertices that are already in $T_{m s t}$.
- The set of other vertices: $V \backslash S$.

At the end of the algorithm, $S=V$.
If an edge connects a vertex in V and a vertex in $V \backslash S$, we call it an cross edge.

V

Prim's algorithm

The algorithm grows a tree $T_{m s t}$ by including one vertex at a time. At any moment, it divides the vertex set V into two parts:

- The set S of vertices that are already in $T_{m s t}$.
- The set of other vertices: $V \backslash S$.

At the end of the algorithm, $S=V$.
If an edge connects a vertex in V and a vertex in $V \backslash S$, we call it an cross edge.

Prim's algorithm

The algorithm grows a tree $T_{m s t}$ by including one vertex at a time. At any moment, it divides the vertex set V into two parts:

- The set S of vertices that are already in $T_{m s t}$.
- The set of other vertices: $V \backslash S$.

At the end of the algorithm, $S=V$.
If an edge connects a vertex in V and a vertex in $V \backslash S$, we call it an cross edge.

Implementing Prim's algorithm

To implement the algorithm efficiently, we will enforce the following invariant:

- For every vertex $v \in V \backslash S$, remember which cross edge of v has the smallest weight - refer to the edge as the lightest cross edge of v and denote it as best-cross(v).

Implementing Prim's algorithm

1. $\{u, v\}=$ an edge with the smallest weight among all edges.
2. Set $S=\{u, v\}$. Initialize a tree $T_{m s t}$ with only one edge $\{u, v\}$.
3. Enforce our invariant:

- For every vertex z of $V \backslash S$
- best-cross $(z)=$ the lighter edge between $\{z, u\}$ and $\{z, v\}$
- If an edge does not exist, treat its weight as infinity.

Example

Edge $\{a, b\}$ is the lightest of all. So, in the beginning $S=\{a, b\}$. The MST now has one edge $\{a, b\}$.

vertex \boldsymbol{v}	best-cross and weight
a	n / a
b	n / a
c	$\{\mathrm{c}, \mathrm{a}\}, 3$
d	nil, ∞
e	$\{\mathrm{e}, \mathrm{b}\}, 10$
f	$\{\mathrm{a}, \mathrm{f}\}, 7$
g	$\{\mathrm{g}, \mathrm{b}\}, 13$
h	$\{a, h\}, 8$

Implementing Prim's algorithm

4. Repeat the following until $S=V$:
5. Find a cross edge $\{u, v\}$ with the smallest weight /* Without loss of generality, suppose $u \in S$ and $v \notin S$ */
6. Add v into S, and add edge $\{u, v\}$ into $T_{m s t}$ /* Next, restore the invariant. */
7. for every edge $\{v, z\}$ of v :

- If $z \notin S$ then

If best-cross (z) is heavier than edge $\{v, z\}$ then
Set best-cross $(z)=$ edge $\{v, z\}$

Example

Edge $\{c, a\}$ is a lightest cross edge. So, we add c to S, which is now $S=\{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

vertex \boldsymbol{v}
best-cross and weight

vertex \boldsymbol{v}	best-cross and weight
a	n / a
b	n / a
c	$\{\mathrm{c}, \mathrm{a}\}, 3$
d	nil, ∞
e	$\{\mathrm{e}, \mathrm{b}\}, 10$
f	$\{\mathrm{a}, \mathrm{f}\}, 7$
g	$\{\mathrm{g}, \mathrm{b}\}, 13$
h	$\{\mathrm{a}, \mathrm{h}\}, 8$

Example

Restore the invariant.

vertex \boldsymbol{v}
best-cross and weight

a	n / a
b	n / a
c	$\{c, a\}, 3=>n / a$
d	nil, ∞
e	$\{e, b\}, 10$
f	$\{a, f\}, 7=>\{c, f\}\}, 5$
g	$\{g, b\}, 13$
h	$\{a, h\}, 8=>\{c, h\}, 6$

Example

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S=\{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

Example

Restore the invariant.

Example

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S=\{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

vertex v	best-cro (v) and weight
a	n / a
b	n / a
c	n / a
d	nil, ∞
e	$\{\mathrm{e}, \mathrm{f}\}, 2$
f	n / a
g	$\{\mathrm{g}, \mathrm{b}\}, 13$
h	$\{\mathrm{c}, \mathrm{h}\}, 6$

Example

Restore the invariant.

Example

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S=\{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

vertex v	best-cro (v) and weight
a	n / a
b	n / a
c	n / a
d	$\{\mathrm{e}, \mathrm{d}\}, 12$
e	n / a
f	n / a
g	$\{\mathrm{g}, \mathrm{b}\}, 13$
h	$\{\mathrm{c}, \mathrm{h}\}, 6$

Example

Restore the invariant.

vertex v	best-cro (v) and weight
a	n / a
b	n / a
c	n / a
d	$\{\mathrm{e}, \mathrm{d}\}, 12$
e	n / a
f	n / a
g	$\{\mathrm{g}, \mathrm{h}\}, 9$
h	n / a

Example

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S=\{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

Example

Restore the invariant.

Example

Finally, edge $\{d, g\}$ is the lightest cross edge. So, we add d to S, which is now $S=\{a, b, c, f, e, h, g, d\}$. Add edge $\{d, g\}$ into the MST.

vertex \boldsymbol{v}	best-cro (v) and weight
a	n / a
b	n / a
c	n / a
d	$\{\mathrm{d}, \mathrm{g}\}, 11$
e	n / a
f	n / a
g	n / a
h	n / a

Example

We have obtained our final MST.

Data structure

For a fast implementation, we need a good data structure.
Let P be a set of n tuples of the form (id, weight, data). Design a data structure to support the following operations:
\checkmark Find: given an integer t, find the tuple (id, weight, data) from P where $t=i d$; return nothing if the tuple does not exist.
\checkmark Insert: add a new tuple (id, weight, data) to P.
\checkmark Delete: given an integer t, delete the tuple (id, weight, data) from P where $t=i d$.
\checkmark DeleteMin: remove from P the tuple with the smallest weight.

We can obtain a structure of $O(n)$ space that supports all operations in $O(\log n)$ time. See Problem 4 of Regular Exercise 4.

Data structure operations

Edge $\{a, b\}$ is the lightest of all. $S=\{a, b\}$.

vertex	weight	best-cross
c	3	$\{c, a\}$
d	∞	nil
e	10	$\{e, b\}$
f	7	$\{a, f\}$
g	13	$\{g, b\}$
h	8	$\{a, h\}$

6 (id, weight, data) insertions into P.

In general, $|V|-2$ insertions in $O(|V| \cdot \log |V|)$ time.

Data structure operations

Edge $\{c, a\}$ is the lightest cross edge. So, we add c to S, which is now $S=\{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

Perform DeleteMin to obtain $\{c, a\}$ in $O(\log |V|)$ time.

Data structure operations

Restore the invariant.

P		
vertex	weight	best-cross
d	∞	nil
e	10	$\{e, b\}$
f	$7=>5$	$\{a, f\}=>\{c, f\}$
g	13	$\{g, b\}$
h	$8=>6$	$\{a, h\}=>\{c, h\}$

For edge $\{c, b\}$, perform a find op. using the id of $b=>b$ has no tuple in P.
For edge $\{c, a\}$, perform a find op. $\Rightarrow>a$ has no tuple in P.
For edge $\{c, f\}$, perform a find op. $\Rightarrow>f$ has a tuple with weight 7 .
As $\{c, f\}$ is lighter, delete $(f, 7,\{a, f\})$ from P and insert $(f, 5,\{c, f\})$.
For edge $\{c, h\}$, perform a find op. $=>h$ has a tuple with weight 8 .
As $\{c, h\}$ is lighter, delete $(h, 8,\{a, h\})$ from P and insert $(h, 6,\{c, h\})$.

Time: $O\left(d_{c} \log |V|\right)$ time where d_{c} is the degree of c.

Data structure operations

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S=\{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

vertex	weight	best-cross
d	∞	Nil
e	10	$\{e, b\}$
f	5	$\{c, f\}$
g	13	$\{g, b\}$
h	6	$\{c, h\}$

Perform DeleteMin to obtain $\{f, c\}$ in $O(\log |V|)$ time.

Data structure operations

Restore the invariant.

P			
vertex	weight	best-cross	
d	∞	Nil	
e	$10=>2$	$\{e, b\}=>\{e, f\}$	
g	13	$\{g, \mathrm{~b}\}$	
h	6	$\{c, h\}$	

For edge $\{f, a\}$, perform a find op. using the id of $a=>a$ has no tuple in P.
For edge $\{f, c\}$, perform a find op. $\Rightarrow c$ has no tuple in P.
For edge $\{f, e\}$, perform a find op. $\Rightarrow e$ has a tuple with weight 2 .
As $\{f, e\}$ is lighter, delete $(e, 10,\{e, b\})$ from P and insert $(e, 2,\{e, f\})$.

Time: $O\left(d_{f} \log |V|\right)$ time where d_{f} is the degree of f.

Data structure operations

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S=\{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

P		
vertex	weight	best-cross
d	∞	Nil
e	z	$\{e, f\}$
g	13	$\{g, \mathrm{~b}\}$
h	6	$\{c, \mathrm{~h}\}$

Perform DeleteMin to obtain $\{e, f\}$ in $O(\log |V|)$ time.

Data structure operations

Restore the invariant.

P		
vertex	weight	best-cross
d	$\infty=>12$	Nil $=>\{\mathrm{e}, \mathrm{d}\}$
g	13	$\{\mathrm{~g}, \mathrm{~b}\}$
h	6	$\{\mathrm{c}, \mathrm{h}\}$

For edge $\{e, f\}$, perform a find op. using the id of $f \Rightarrow f$ has no tuple in P.
For edge $\{e, b\}$, perform a find op. $\Rightarrow>b$ has no tuple in P.
For edge $\{e, d\}$, perform a find op. $\Rightarrow d$ has a tuple with weight ∞.
As $\{e, d\}$ is lighter, delete (d, ∞, Nil) from P and insert $(d, 12,\{e, d\})$.

Time: $O\left(d_{e} \log |V|\right)$ time where d_{e} is the degree of e.

Data structure operations

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S=\{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

Perform DeleteMin to obtain $\{c, h\}$ in $O(\log |V|)$ time.

Example

Restore the invariant.

P		
vertex	weight	best-cross
d	12	$\{e, d\}$
g	$13=>9$	$\{\mathrm{~g}, \mathrm{~b}\}=>\{\mathrm{g}, \mathrm{h}\}$

For edge $\{h, a\}$, perform a find op. using the id of $a \Rightarrow a$ has no tuple in P.
For edge $\{h, c\}$, perform a find op. $\Rightarrow c$ has no tuple in P.
For edge $\{h, g\}$, perform a find op. $=>g$ has a tuple with weight 13.
As $\{h, g\}$ is lighter, delete $(g, 13,\{g, b\})$ from P and insert $(g, 9,\{g, h\})$.

Time: $O\left(d_{h} \log |V|\right)$ time where d_{h} is the degree of h.

Example

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S=\{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

Perform DeleteMin to obtain $\{g, h\}$ in $O(\log |V|)$ time.

Example

Restore the invariant.

For edge $\{g, b\}$, perform a find op. using the id of $b=>b$ has no tuple in P.
For edge $\{g, h\}$, perform a find op. $=>h$ has no tuple in P.
For edge $\{g, d\}$, perform a find op. $\Rightarrow d$ has a tuple with weight 12.
As $\{g, d\}$ is lighter, delete ($d, 12,\{e, d\}$) from P and insert $(g, 11,\{g, d\})$.

Time: $O\left(d_{g} \log |V|\right)$ time where d_{g} is the degree of g.

Example

Finally, edge $\{g, d\}$ is the lightest cross edge. So, we add d to S, which is now $S=\{a, b, c, f, e, h, g, d\}$. Add edge $\{g, d\}$ into the MST.

Perform DeleteMin to obtain $\{g, d\}$ in $O(\log |V|)$ time.

Example

We have obtained our final MST.

$$
\begin{aligned}
& \text { Total time: } \\
& O\left(|V| \cdot \log |V|+\sum_{v \in V} \log |V|+\right. \\
& \left.\sum_{v \in V} d_{v} \log |V|\right) \\
& =O((2|V|+2|E|) \cdot \log |V|) \\
& =O((|V|+|E|) \cdot \log |V|)
\end{aligned}
$$

