CSCI3160: Tutorial 3

\square Problem 1

- $O(n \log n)$-time algorithm for finding the number of inversions.
\square Problem 2
- $O(n \log n)$-time algorithm to solve the dominance counting problem.

Review: Counting inversions

\square Problem: Given an array A of n distinct integers, count the number of inversions.
\square An inversion is a pair of (i, j) such that

- $1 \leq i<j \leq n$.
- $A[i]>A[j]$.

Example: Consider $A=(10,3,9,8,2,5,4,1,7,6)$.
Then $(1,2)$ is an inversion because $A[1]=10>A[2]=3$. So are $(1,3),(3,4),(4,5)$, and so on.
There are in total 31 inversions.

Review: Counting inversions

\square Let: $A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(10,3,9,8,2), A_{2}=(5,4,1,7,6)$.
- The counts of inversions in A_{1} and A_{2} are known by solving the "counting inversion" problem recursively on A_{1} and A_{2}.

Review: Counting inversions

\square Let: $A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(10,3,9,8,2), A_{2}=(5,4,1,7,6)$.
- The counts of inversions in A_{1} and A_{2} are known by solving the "counting inversion" problem recursively on A_{1} and A_{2}.
\square We need to count the number of crossing inversion (i, j) where i is in A_{1} and j in A_{2}.

Review: Counting inversions

\square Let: $A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(10,3,9,8,2), A_{2}=(5,4,1,7,6)$.
- The counts of inversions in A_{1} and A_{2} are known by solving the "counting inversion" problem recursively on A_{1} and A_{2}.
\square We need to count the number of crossing inversion (i, j) where i is in A_{1} and j in A_{2}.
\square Binary search
- Sort A_{1} and A_{2}, and conduct $n / 2$ binary searches $(O(n \log n))$.

Review: Counting inversions

\square Let: $A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(10,3,9,8,2), A_{2}=(5,4,1,7,6)$.
- The counts of inversions in A_{1} and A_{2} are known by solving the "counting inversion" problem recursively on A_{1} and A_{2}.
\square We need to count the number of crossing inversion (i, j) where i is in A_{1} and j in A_{2}.
\square Binary search
- Sort A_{1} and A_{2}, and conduct $n / 2$ binary searches $(O(n \log n))$.
- Let $f(n)$ be the worst-case running time of the algorithm on n numbers.
$\checkmark f(n) \leq 2 f([n / 2])+O(n \log n)$
\checkmark which solves to $f(n)=O\left(n \log ^{2} n\right)$.

Counting inversions: a faster algorithm

\square Strategy: ask a harder question, and exploit it in the conquer phase.

Counting inversions and sorting

\square Strategy: ask a harder question, and exploit it in the conquer phase.
\square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.

Counting inversions and sorting

\square Strategy: ask a harder question, and exploit it in the conquer phase.
\square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
$\square A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(2,3,8,9,10), 8$ invs; $A_{2}=(1,4,5,6,7), 4$ invs.

Counting inversions and sorting

\square Strategy: ask a harder question, and exploit it in the conquer phase.
\square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
$\square A=(10,3,9,8,2,5,4,1,7,6)$

- $A_{1}=(2,3,8,9,10), 8$ invs; $A_{2}=(1,4,5,6,7), 4$ invs.
\square Exploit subproblem property
- Subarrays A_{1}, A_{2} are sorted
$>$ Count crossing inversions in $\mathrm{O}(\mathrm{n})$ time.
$>$ Merge 2 sorted arrays in $\mathrm{O}(\mathrm{n})$ time.

Counting crossing inversions

\square Let S_{1} and S_{2} be two disjoint sets of n integers. Assume that S_{1} is stored in an array A_{1}, and S_{2} in an array A_{2}. Both A_{1} and A_{2} are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying the following conditions:
$\checkmark a \in S_{1}$,
$\checkmark b \in S_{2}$,
$\checkmark a>b$.
\checkmark Your algorithm must finish in $\mathrm{O}(n)$ time.

Counting crossing inversions

\square Method

- Merge A_{1} and A_{2} into one sorted list A.
\square Let: $A=(10,3,9,8,2,5,4,1,7,6)$
- $A_{1}=(2,3,8,9,10), A_{2}=(1,4,5,6,7)$

$$
\begin{aligned}
& \begin{array}{llll}
A_{1} & 2 & 3 & 8 \\
9 & 9 & 10
\end{array}
\end{aligned}
$$

\square We will merge them together and in the meantime maintain the count of crossing inversions.

Counting crossing inversions

- Ordered list produced: Nothing yet
- The count of crossing inversions : 0

Counting crossing inversions

- Ordered list produced: 1
- The count of crossing inversions : 0

Counting crossing inversions

- Ordering produced: 1,2
- The count of crossing inversions : $0+1=1$.

Last count Newly added: $(2,1)$ is a crossing inversion

Counting crossing inversions

- Ordering produced: 1, 2, 3
- The count of crossing inversions : $1+1=2$.

Last count Newly added: $(3,1)$ is a crossing inversion.

Counting crossing inversions

- Ordering produced: 1, 2, 3, 4
- The count of crossing inversions : 2

Last count

Counting crossing inversions

- Ordering produced: $1,2,3,4,5$
- The count of crossing inversions : 2

Last count

Counting crossing inversions

- Ordering produced: $1,2,3,4,5,6$
- The count of crossing inversions : 2 .

Last count

Counting crossing inversions

- Ordering produced: $1,2,3,4,5,6,7$
- The count of crossing inversions: 2

Last count

Counting crossing inversions

- Ordering produced: $1,2,3,4,5,6,7,8$
- The count of crossing inversions : $2+5=7$.

Last count Newly added count:
$(8,1),(8,4),(8,5),(8,6),(8,7)$

Counting crossing inversions

- Ordering produced: $1,2,3,4,5,6,7,8,9$
- The count of crossing inversions : $7+5=12$.

Last count Newly added count:
$(9,1),(9,4),(9,5),(9,6),(9,7)$

Counting crossing inversions

- Ordering produced: $1,2,3,4,5,6,7,8,9,10$
- The count of crossing inversions : $12+5=17$.

Last count Newly added count: \#integers from A_{2} already in the ordered list produced

Counting inversions

\square Analysis

- Let $f(n)$ be the worst-case running time of the algorithm on n numbers.
Then
- $f(n) \leq 2 f(\lceil n / 2\rceil)+O(n)$,
- which solves to $f(n)=O(n \log n)$.

Dominance counting

\square Problem

- Give an $O(n \log n)$-time algorithm to solve the dominance counting problem discussed in the class.
\square Point dominance definition
- Denote by \mathbb{N} the set of integers. Given a point p in twodimensional space \mathbb{N}^{2}, denote by $p[1]$ and $p[2]$ its x - and y coordinates, respectively.
- Given two distinct points p and q, we say that q dominates p if $p[1] \leq q[1]$ and $p[2] \leq q[2]$.

Dominance counting

\square Let P be a set of n points in \mathbb{N}^{2}. Find, for each point $p \in P$, the number of points in P that are dominated by p.

Example:

We should output: $\left(p_{1}, 0\right),\left(p_{2}, 1\right),\left(p_{3}, 0\right),\left(p_{4}, 2\right),\left(p_{5}, 2\right),\left(p_{6}, 5\right)$, $\left(p_{7}, 2\right),\left(p_{8}, 0\right)$.

Dominance counting

\square Divide: Find a vertical line l such that P has $[n / 2\rceil$ points on each side of the line. (k-selection, $O(n)$ time).

Dominance counting

\square Divide:

- $P_{1}=$ the set of points of P on the left of l.
- $P_{2}=$ the set of points of P on the right of l.

Example:

$$
\begin{aligned}
& P_{1}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \\
& P_{2}=\left\{p_{5}, p_{6}, p_{7}, p_{8}\right\} .
\end{aligned}
$$

Dominance counting

\square Divide:

- Solve the dominance counting problem on P_{1} and P_{2} separately.

Example:

Dominance counting

\square Divide:

- Solve the dominance counting problem on P_{1} and P_{2} separately.
- It remains to obtain, for each point $p \in P_{2}$, how many points in P_{1} it dominates.

Example:

On P_{1}, we have obtained:
$\left(p_{1}, 0\right),\left(p_{2}, 1\right),\left(p_{3}, 0\right),\left(p_{4}, 2\right)$.
On P_{2}, we have obtained:
$\left(p_{5}, 0\right),\left(p_{6}, 1\right),\left(p_{7}, 0\right),\left(p_{8}, 0\right)$.

Dominance counting

\square Review: Binary search

- Sort P_{1} by y-coordinate. ($O(n \log n)$)
- Then, for each point $p \in P_{2}$, we can obtain the number of points in P_{1} dominated by p using binary search. $(O(n \log n))$

Example:

P_{1} in ascending of y -coordinate:
$p_{3}, p_{1}, p_{4}, p_{2}$.
How to perform binary search to obtain the fact that p_{5} dominates 2 points in P_{1} ?

- Search using the y-coordinate of p_{5}.

Dominance counting: a faster algorithm

\square Ask a harder question:

- Output the dominance counts and sort P by y-coordinate.
\square Scan the point from P_{1} by y-coordinate in ascending order, and scan P_{2} in the same way synchronously.
- Merge the following two sorted arrays, based on y-coordinates and obtain the number of points in P_{1} dominated by p.
- $P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
- $P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$

Dominance counting

\square Scan the points from P_{1} by y-coordinate in ascending order. Do the same on P_{2}.

- $P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
- $P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
$\square \bar{P}=()$

- All the points will be stored in this array in ascending order of y-coordinate.
- To be produced by merging P_{1} and P_{2}.

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=0$
$\square \bar{P}=()$
index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=0$
$\square \bar{P}=\left(p_{8}\right)$

- p_{8} dominates 0 point in P_{1}.

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=0$
$\square \bar{P}=\left(p_{8}, p_{3}\right)$
index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=0$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}\right)$
index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=2$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}\right)$

- p_{7} dominates 2 point in P_{2}
index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=4$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}, p_{5}\right)$

- p_{5} dominates 2 point in P_{1}

index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=4$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}\right)$
index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
index
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=4$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}, p_{2}\right)$

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$
\square count $=8$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}, p_{2}, p_{6}\right)$

- p_{6} dominates 4 points in P_{1}.

index

Dominance counting

$\square P_{1}=\left(p_{3}, p_{1}, p_{4}, p_{2}\right)$.
$\square P_{2}=\left(p_{8}, p_{7}, p_{5}, p_{6}\right)$.
\square count $=8$
$\square \bar{P}=\left(p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}, p_{2}, p_{6}\right)$.
\square Current time complexity: $O(n)$.

Dominance counting

\square Analysis

- Let $f(n)$ be the worst-case running time of the algorithm on n points.
- $f(n) \leq 2 f([n / 2\rceil)+O(n)$,
- which solves to $f(n)=O(n \log n)$.

