CSCI3160: Tutorial 3

□ Problem 1

• $O(n\log n)$ -time algorithm for finding the number of inversions.

□ Problem 2

• $O(n\log n)$ -time algorithm to solve the dominance counting problem.

- \square Problem: Given an array A of n distinct integers, count the number of inversions.
- \square An inversion is a pair of (i, j) such that
 - $1 \le i < j \le n$.
 - A[i] > A[j].

Example: Consider A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6).

Then (1,2) is an inversion because A[1] = 10 > A[2] = 3. So are (1,3), (3,4), (4,5), and so on.

There are in total 31 inversions.

- \square Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - \bullet $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6).$
 - The counts of inversions in A_1 and A_2 are known by solving the "counting inversion" problem recursively on A_1 and A_2 .

- \square Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - \bullet $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6).$
 - The counts of inversions in A_1 and A_2 are known by solving the "counting inversion" problem recursively on A_1 and A_2 .
- \square We need to count the number of crossing inversion (i,j) where i is in A_1 and j in A_2 .

- \square Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - \bullet $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6).$
 - The counts of inversions in A_1 and A_2 are known by solving the "counting inversion" problem recursively on A_1 and A_2 .
- \square We need to count the number of crossing inversion (i,j) where i is in A_1 and j in A_2 .
- ☐ Binary search
 - Sort A_1 and A_2 , and conduct n/2 binary searches $(O(n\log n))$.

- \square Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - \bullet $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6).$
 - The counts of inversions in A_1 and A_2 are known by solving the "counting inversion" problem recursively on A_1 and A_2 .
- \square We need to count the number of crossing inversion (i,j) where i is in A_1 and j in A_2 .
- ☐ Binary search
 - Sort A_1 and A_2 , and conduct n/2 binary searches $(O(n\log n))$.
 - Let f(n) be the worst-case running time of the algorithm on n numbers.
 - $\checkmark f(n) \le 2f(\lceil n/2 \rceil) + O(n\log n)$
 - ✓ which solves to $f(n) = O(n\log^2 n)$.

Counting inversions: a faster algorithm

☐ Strategy: ask a harder question, and exploit it in the conquer phase.

Counting inversions and sorting

- ☐ Strategy: ask a harder question, and exploit it in the conquer phase.
- \square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.

Counting inversions and sorting

- ☐ Strategy: ask a harder question, and exploit it in the conquer phase.
- \square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
- $\square A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (2,3,8,9,10)$, 8 invs; $A_2 = (1,4,5,6,7)$, 4 invs.

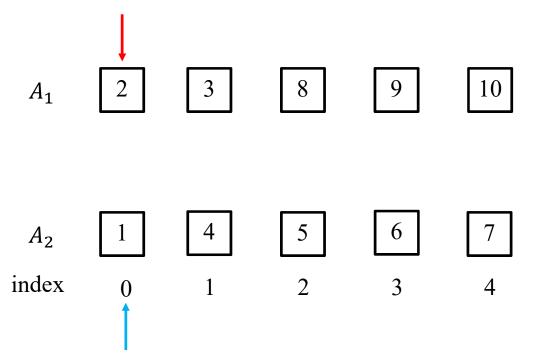
Counting inversions and sorting

- ☐ Strategy: ask a harder question, and exploit it in the conquer phase.
- \square Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
- $\square A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (2,3,8,9,10)$, 8 invs; $A_2 = (1,4,5,6,7)$, 4 invs.
- ☐ Exploit subproblem property
 - Subarrays A_1 , A_2 are sorted
 - Count crossing inversions in O(n) time.
 - Merge 2 sorted arrays in O(n) time.

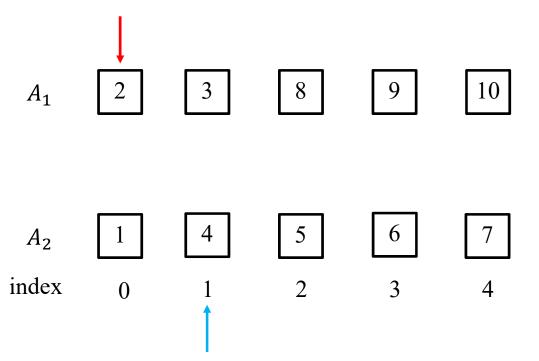
Let S_1 and S_2 be two disjoint sets of n integers. Assume that S_1 is stored in an array A_1 , and S_2 in an array A_2 . Both A_1 and A_2 are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying the following conditions:

- $\checkmark a \in S_1$,
- \checkmark $b \in S_2$,
- $\checkmark a > b$.
- \checkmark Your algorithm must finish in O(n) time.

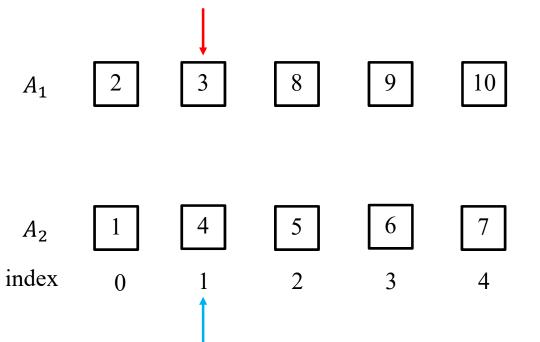
- ☐ Method
 - Merge A_1 and A_2 into one sorted list A.
- \square Let: A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)
 - \bullet $A_1 = (2,3,8,9,10), A_2 = (1,4,5,6,7)$
 - A_1 $\begin{bmatrix} 2 & 3 & 8 & 9 & 10 \end{bmatrix}$
 - A_2 $\begin{bmatrix} 1 & 4 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 7 & 7 & 6 & 7 \end{bmatrix}$
- ☐ We will merge them together and in the meantime maintain the count of crossing inversions.



- Ordered list produced: Nothing yet
- The count of crossing inversions : 0

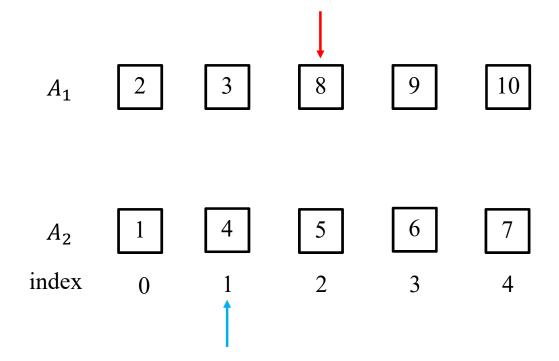


- Ordered list produced: 1
- The count of crossing inversions : 0



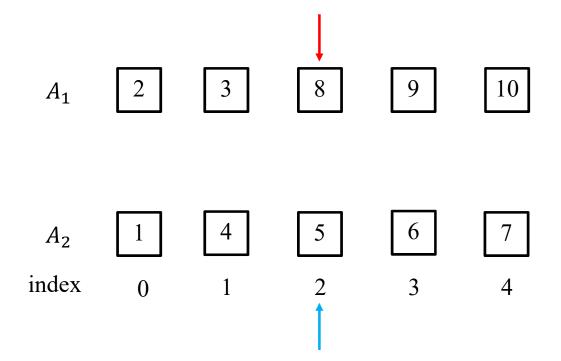
- Ordering produced: 1, 2
- The count of crossing inversions : 0 + 1 = 1.

Last count Newly added: (2,1) is a crossing inversion

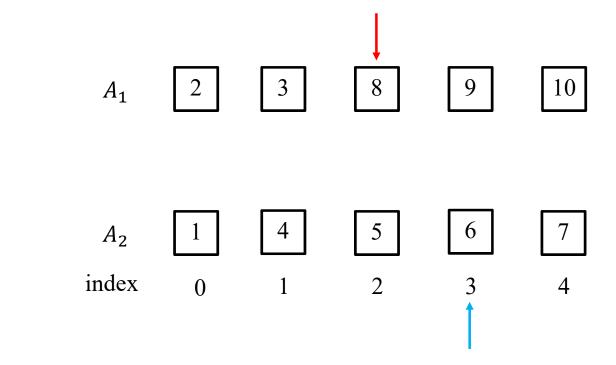


- Ordering produced: 1, 2, 3
- The count of crossing inversions : 1 + 1 = 2.

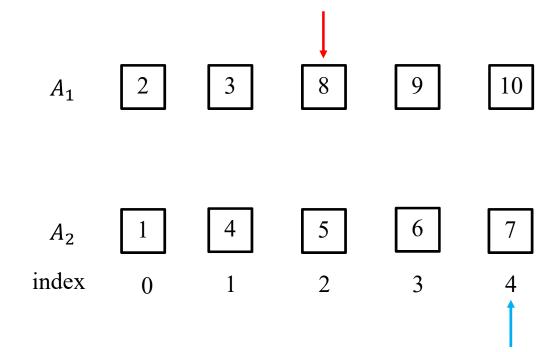
Last count Newly added: (3,1) is a crossing inversion.



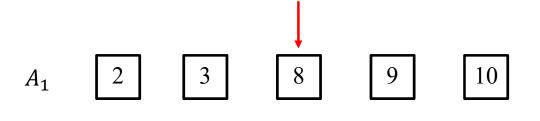
- Ordering produced: 1, 2, 3, 4
- The count of crossing inversions : 2



- Ordering produced: 1, 2, 3, 4, 5
- The count of crossing inversions : 2

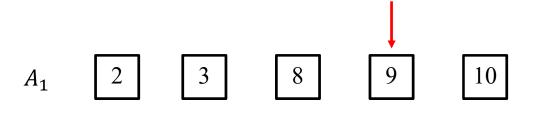


- Ordering produced: 1, 2, 3, 4, 5, 6
- The count of crossing inversions : 2.



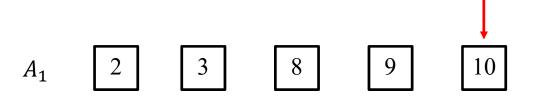
$$A_2$$
 1 4 5 6 7 index 0 1 2 3 4

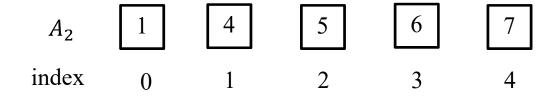
- Ordering produced: 1, 2, 3, 4, 5, 6, 7
- The count of crossing inversions: 2



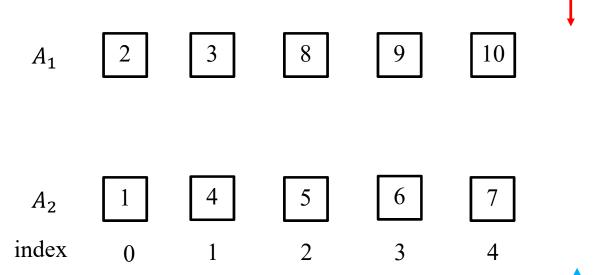
$$A_2$$
 1 4 5 6 7 index 0 1 2 3 4

- Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8
- The count of crossing inversions : 2 + 5 = 7.





- Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9
- The count of crossing inversions : 7 + 5 = 12.



- Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- The count of crossing inversions : 12 + 5 = 17.

Last count Newly added count: #integers from A_2 already in the ordered list produced

Counting inversions

☐ Analysis

• Let f(n) be the worst-case running time of the algorithm on n numbers.

Then

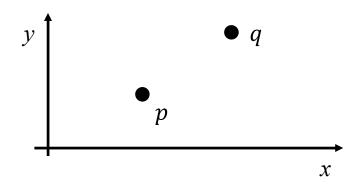
- $f(n) \le 2f(\lceil n/2 \rceil) + O(n),$
- which solves to $f(n) = O(n \log n)$.

□ Problem

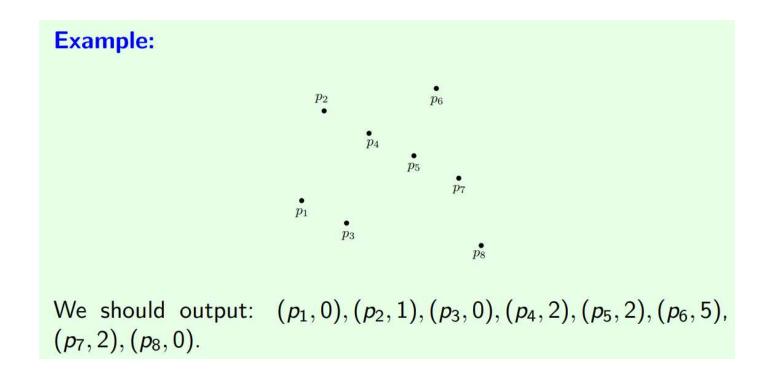
• Give an $O(n\log n)$ -time algorithm to solve the dominance counting problem discussed in the class.

☐ Point dominance definition

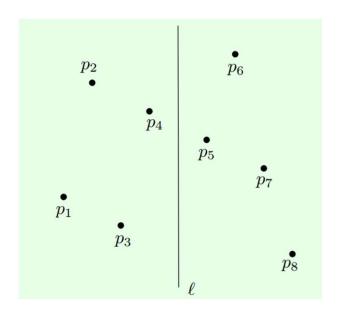
- Denote by N the set of integers. Given a point p in two-dimensional space \mathbb{N}^2 , denote by p[1] and p[2] its x- and y-coordinates, respectively.
- Given two distinct points p and q, we say that q dominates p if $p[1] \le q[1]$ and $p[2] \le q[2]$.



Let P be a set of n points in \mathbb{N}^2 . Find, for each point $p \in P$, the number of points in P that are dominated by p.

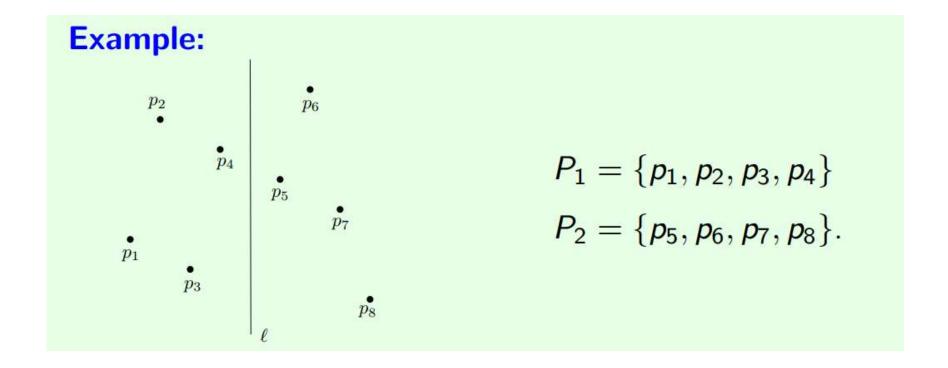


Divide: Find a vertical line l such that P has $\lceil n/2 \rceil$ points on each side of the line. (k-selection, O(n) time).



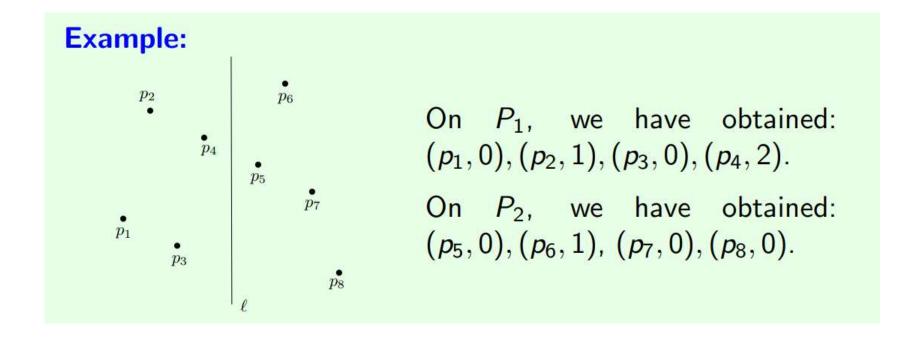
☐ Divide:

- P_1 = the set of points of P on the left of l.
- P_2 = the set of points of P on the right of l.



☐ Divide:

• Solve the dominance counting problem on P_1 and P_2 separately.

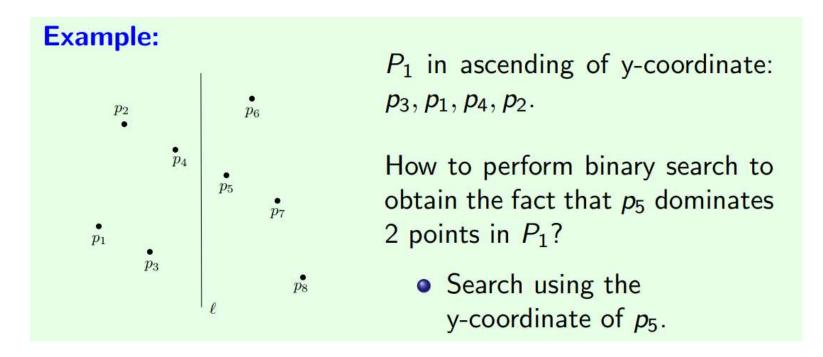


☐ Divide:

- Solve the dominance counting problem on P_1 and P_2 separately.
- It remains to obtain, for each point $p \in P_2$, how many points in P_1 it dominates.

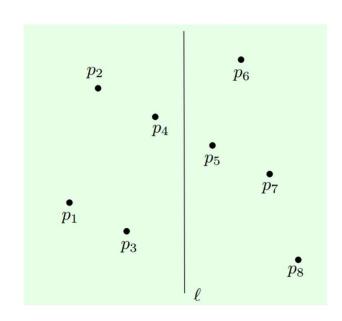
Example: p_{2} p_{6} On P_{1} , we have obtained: $(p_{1},0),(p_{2},1),(p_{3},0),(p_{4},2).$ p_{7} p_{7} p_{8} On P_{2} , we have obtained: $(p_{5},0),(p_{6},1),(p_{7},0),(p_{8},0).$

- ☐ Review: Binary search
 - Sort P_1 by y-coordinate. $(O(n \log n))$
 - Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using binary search. $(O(n \log n))$

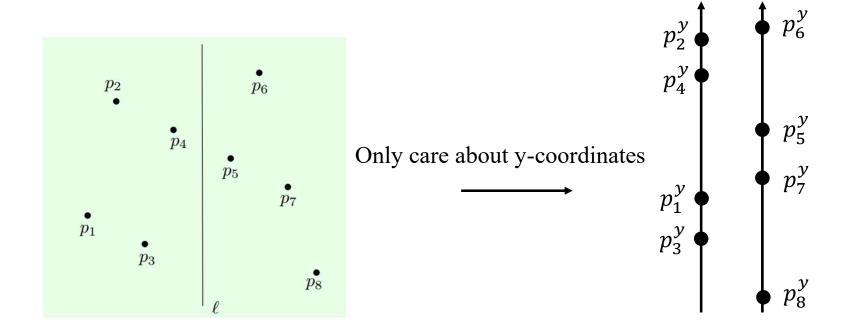


Dominance counting: a faster algorithm

- ☐ Ask a harder question:
 - Output the dominance counts and sort *P* by y-coordinate.
- \square Scan the point from P_1 by y-coordinate in ascending order, and scan P_2 in the same way synchronously.
 - Merge the following two sorted arrays, based on y-coordinates and obtain the number of points in P_1 dominated by p.
 - $\bullet P_1 = (p_3, p_1, p_4, p_2)$
 - $\bullet P_2 = (p_8, p_7, p_5, p_6)$



- \square Scan the points from P_1 by y-coordinate in ascending order. Do the same on P_2 .
 - $\bullet P_1 = (p_3, p_1, p_4, p_2)$
 - $\bullet P_2 = (p_8, p_7, p_5, p_6)$



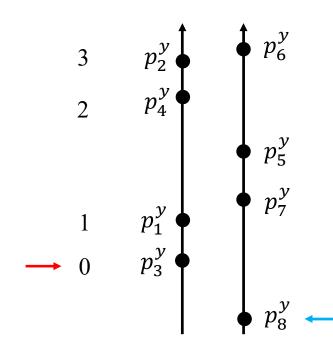
- $\square P_1 = (p_3, p_1, p_4, p_2)$
- $\square P_2 = (p_8, p_7, p_5, p_6)$
- $\Box \bar{P} = ()$
 - All the points will be stored in this array in ascending order of y-coordinate.
 - To be produced by merging P_1 and P_2 .

$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square$$
 count = 0

$$\Box \bar{P} = ()$$



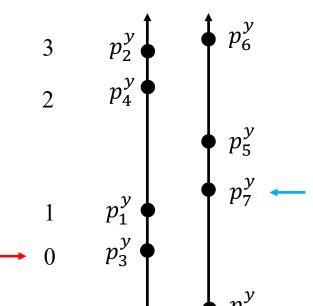
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square$$
 count = 0

$$\Box \bar{P} = (p_8)$$

• p_8 dominates 0 point in P_1 .

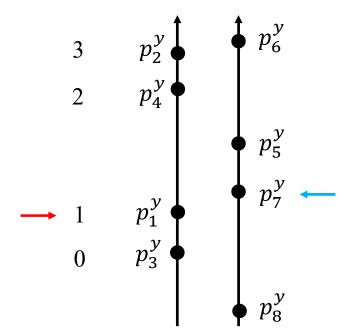


$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\Box$$
 count = 0

$$\square \, \overline{P} = (p_8 , p_3)$$

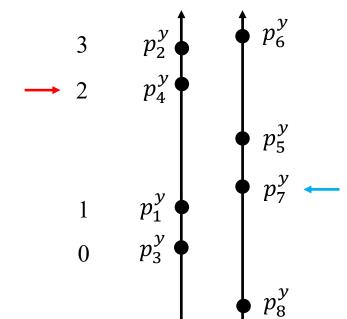


$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\Box$$
 count = 0

$$\square \, \overline{P} = (p_8 , p_3 , p_1)$$



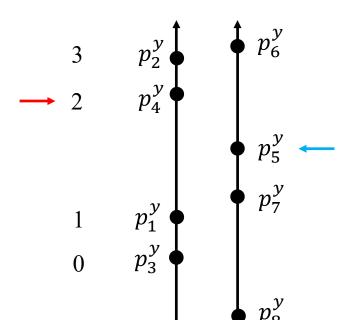
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square$$
 count = 2

$$\square \bar{P} = (p_8, p_3, p_1, p_7)$$

• p_7 dominates 2 point in P_2



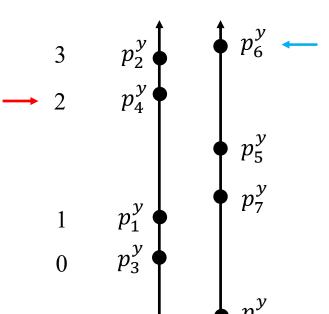
$$\square P_1 = (p_3, p_1, p_4, p_2)$$

$$\square P_2 = (p_8, p_7, p_5, p_6)$$

$$\square$$
 count = 4

$$\square \, \bar{P} = \left(p_8 \, , p_3 \, , p_1 \, , p_7 \, , p_5 \, \right)$$

• p_5 dominates 2 point in P_1



$$\Box P_{1} = (p_{3}, p_{1}, p_{4}, p_{2})$$

$$\Box P_{2} = (p_{8}, p_{7}, p_{5}, p_{6})$$

$$\Box count = 4$$

$$\Box \bar{P} = (p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4})$$

$$\begin{vmatrix} p_{1}^{y} & p_{6}^{y} \\ p_{7}^{y} \\ p_{7}^{y} \end{vmatrix}$$

$$\begin{vmatrix} p_{1}^{y} & p_{7}^{y} \\ p_{7}^{y} \\ p_{8}^{y} \end{vmatrix}$$

$$\Box P_{1} = (p_{3}, p_{1}, p_{4}, p_{2}) \\
\Box P_{2} = (p_{8}, p_{7}, p_{5}, p_{6}) \\
\Box count = 4$$

$$\Box \bar{P} = (p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}, p_{2})$$

$$\begin{vmatrix} 1 & p_{1}^{y} \\ p_{8}^{y} \end{vmatrix}$$

$$\begin{vmatrix} 1 & p_{1}^{y} \\ p_{8}^{y} \end{vmatrix}$$

$$\begin{vmatrix} 1 & p_{1}^{y} \\ p_{8}^{y} \end{vmatrix}$$

$$\Box P_{1} = (p_{3}, p_{1}, p_{4}, p_{2}) \\
\Box P_{2} = (p_{8}, p_{7}, p_{5}, p_{6}) \\
\Box count = 8$$

$$\Box \bar{P} = (p_{8}, p_{3}, p_{1}, p_{7}, p_{5}, p_{4}, p_{2}, p_{6})$$

$$\bullet p_{6} \text{ dominates 4 points in } P_{1}.$$

$$index$$

$$2 p_{2}^{y} \\
p_{6}^{y} \\
p_{7}^{y} \\
p_{7}^{y} \\
p_{7}^{y}$$

- $\square P_1 = (p_3, p_1, p_4, p_2).$
- $\square P_2 = (p_8, p_7, p_5, p_6).$
- \Box count = 8
- $\square \, \overline{P} = (p_8 , p_3 , p_1 , p_7 , p_5 , p_4 , p_2 , p_6).$
- \square Current time complexity: O(n).

☐ Analysis

- Let f(n) be the worst-case running time of the algorithm on n points.
- $f(n) \le 2f(\lceil n/2 \rceil) + O(n),$
- which solves to $f(n) = O(n \log n)$.