Further Discussion on Set Cover and Hitting Set

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

Set Cover

Let *U* be a finite set called the **universe**.

We are given a family 8 where

- each member of S is a set $S \subseteq U$;
- $\bigcup_{S \in \mathbb{S}} S = U$.

A sub-family $\mathcal{C} \subseteq \mathcal{S}$ is a **universe cover** if every element of U appears in at least one set in \mathcal{C} .

• Define the **cost** of \mathcal{C} as $|\mathcal{C}|$.

The set cover problem:

Find a universe cover with the smallest cost.

Example: $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $S = \{S_1, S_2, ..., S_5\}$ where

$$\begin{array}{rcl} S_1 & = & \{1,2,3,4\} \\ S_2 & = & \{2,5,7\} \\ S_3 & = & \{6,7\} \\ S_4 & = & \{1,8\} \\ S_5 & = & \{1,2,3,8\}. \end{array}$$

An optimal solution is $\mathcal{C} = \{S_1, S_2, S_3, S_4\}$.

Our Approximation Algorithm

- 1. $\mathfrak{C} = \emptyset$
- 2. while U still has elements not covered by any set in ${\mathfrak C}$
- 3. $F \leftarrow$ the set of elements in U not covered by any set in \mathcal{C} /* for each set $S \in \mathcal{S}$, define its **benefit** to be $|S \cap F|$ */
- 4. add to \mathcal{C} a set in \mathcal{S} with the largest benefit
- 5. **return** ^ℂ

We proved in the lecture that the algorithm is $(1 + \ln |U|)$ -approximate.

Next, we will prove that the algorithm is also h-approximate, where $h = \max_{S \in \mathcal{S}} |S|$.

Example:
$$S = \{S_1, S_2, ..., S_5\}$$
 where
$$S_1 = \{1, 2, 3, 4\}$$

$$S_2 = \{2, 5, 7\}$$

$$S_3 = \{6, 7\}$$

$$S_4 = \{1, 8\}$$

$$S_5 = \{1, 2, 3, 8\}.$$

Then, h = 4.

Theorem: The algorithm returns a universe cover with cost at most $h \cdot OPT_8$.

Proof. Suppose that our algorithm picks t sets. Every time the algorithm picks a set, at least one **new** element is covered. For each $i \in [1, t]$, denote by e_i an arbitrary element that is **newly** covered when the i-th set is picked.

Let \mathbb{C}^* be an optimal universe cover. Because each e_i exists in at least one set of \mathbb{C}^* , we have:

$$\begin{split} t &= \sum_{i=1}^t 1 &\leq \sum_{i=1}^t \# \text{ sets in } \mathbb{C}^* \text{ containing } e_i \\ &\leq \sum_{e \in U} \# \text{ sets in } \mathbb{C}^* \text{ containing } e \\ &= \sum_{S \in \mathbb{C}^*} |S| \leq |\mathbb{C}^*| \cdot h. \end{split}$$

Corollary: If h=O(1), then our algorithm achieves a constant approximation ratio.

Remark: With a more careful analysis, we can actually prove that our algorithm has an approximation ratio of $1 + \ln h$.

• Not required in this course.

Our set cover algorithm can be used to solve many problems with approximation guarantees. Next, we will see two examples.

Vertex Cover

G = (V, E) is an undirected graph. We want to find a small subset $V' \subseteq V$ such that every edge of E is incident to at least one vertex in V'. The optimization goal is to minimize |V'|.

Convert the problem to set cover:

- For every $v \in V$, define $S_v =$ the set of edges incident on v.
- Apply our algorithm on the set-cover instance: $S = \{S_v \mid v \in V\}$.

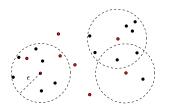
This gives an $O(\ln |V|)$ -approximate solution.

Remark: This algorithm is not as competitive as the 2-approximate vertex-cover algorithm we discussed in the lecture. But the point here is to demonstrate the usefulness of set cover, rather than improving the approximation ratio.

Facility Location

R =a set of n 2D red points, each called a **facility** B =a set of n 2D black points, each called a **customer** $\epsilon =$ a positive integer.

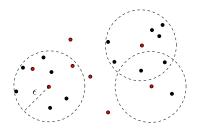
A subset $S \subseteq R$ is a **feasible facility set** if, for every black point $b \in B$, there is at least one point $r \in S$ with $dist(r, b) \le \epsilon$.



OPT = the smallest size of all feasible facility sets.

Goal: Return a feasible facility set with size $OPT \cdot O(\log n)$ (assuming the existence of at least one feasible facility set).

Facility Location



Convert the problem to set cover:

- For every $r \in R$, define S_r = the set of black points b satisfying $dist(r,b) \le \epsilon$.
- Apply our algorithm on the set-cover instance: $S = \{S_r \mid r \in R\}$.

This gives an $O(\log n)$ -approximate solution.

Next, we will turn our attention to the hitting set problem.

Hitting Set

Let *U* be a finite set called the **universe**.

We are given a family § where

- each member of S is a set $S \subseteq U$;
- $\bullet \bigcup_{S \in \mathcal{S}} S = U.$

A subset $H \subseteq U$ hits a set $S \in S$ if $H \cap S \neq \emptyset$.

A subset $H \subseteq U$ is a **hitting set** if it hits all the sets in S.

The hitting set problem:

Find a hitting set H of the minimize size.

Example: $U = \{1, 2, 3, 4, 5\}$ and $S = \{S_1, S_2, ..., S_8\}$ where

$$S_1 = \{1,4,5\}$$
 $S_2 = \{1,2,5\}$
 $S_3 = \{1,5\}$
 $S_4 = \{1\}$
 $S_5 = \{2\}$
 $S_6 = \{3\}$
 $S_7 = \{2,3\}$
 $S_8 = \{4,5\}$

An optimal solution is $H = \{1, 2, 3, 4\}$.

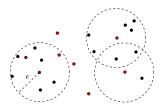
We can obtain a (1+ $\ln |\mathcal{S}|$)-approximate solution by resorting to a set-cover algorithm.

Set cover and hitting set are essentially the same problem.

Facility Location (Revisited)

R =a set of n 2D red points, each called a **facility** B =a set of n 2D black points, each called a **customer** $\epsilon =$ a positive integer.

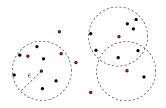
A subset $S \subseteq R$ is a **feasible facility set** if, for every black point $b \in B$, there is at least one point $r \in S$ with $dist(r, b) \le \epsilon$.



OPT = the smallest size of all feasible facility sets.

How to cast the problem as an instance of the hitting set problem?

Facility Location (Revisited)



Convert the problem to hitting set:

- For every $b \in B$, define S_b = the set of red points r satisfying $dist(r,b) \le \epsilon$.
- Solve the hitting set instance: $S = \{S_b \mid b \in B\}$.

Why both set cover and hitting set?

Sometimes, one perspective is easier to perceive than the other.

Scheduling

We have t events: 1, 2, ..., t. Set S_i contains the dates on which event i can be scheduled to take place.

Goal: Find the smallest number of dates to schedule all events.

Earlier, for set cover, we proved that our algorithm taught in the class has an approximation ratio h, where h is the size of the largest set in the input collection.

As set cover is equivalent to hitting set, that result should also imply a new approximation ratio for hitting set. What is the ratio?