Further Discussion on Set Cover and Hitting Set

Yufei Tao's Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

Set Cover

Let U be a finite set called the universe.

We are given a family \mathcal{S} where

- each member of \mathcal{S} is a set $S \subseteq U$;
- $\bigcup_{S \in S} S=U$.

A sub-family $\mathcal{C} \subseteq \mathcal{S}$ is a universe cover if every element of U appears in at least one set in \mathcal{C}.

- Define the cost of \mathcal{C} as $|\mathcal{C}|$.

The set cover problem:
Find a universe cover with the smallest cost.

Example: $U=\{1,2,3,4,5,6,7,8\}$ and $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{5}\right\}$ where

$$
\begin{aligned}
& S_{1}=\{1,2,3,4\} \\
& S_{2}=\{2,5,7\} \\
& S_{3}=\{6,7\} \\
& S_{4}=\{1,8\} \\
& S_{5}=\{1,2,3,8\} .
\end{aligned}
$$

An optimal solution is $\mathcal{C}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$.

Our Approximation Algorithm
$\mathcal{C}=\emptyset$
2. while U still has elements not covered by any set in \mathcal{C}
3. $F \leftarrow$ the set of elements in U not covered by any set in \mathcal{C} $/ *$ for each set $S \in \mathcal{S}$, define its benefit to be $|S \cap F|^{*} /$
4. add to \mathcal{C} a set in \mathcal{S} with the largest benefit
5. return \mathcal{C}

We proved in the lecture that the algorithm is $(1+\ln |U|)$ approximate.

Next, we will prove that the algorithm is also h-approximate, where $h=\max _{S \in \mathcal{S}}|S|$.

Example: $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{5}\right\}$ where

$$
\begin{aligned}
& S_{1}=\{1,2,3,4\} \\
& S_{2}=\{2,5,7\} \\
& S_{3}=\{6,7\} \\
& S_{4}=\{1,8\} \\
& S_{5}=\{1,2,3,8\} .
\end{aligned}
$$

Then, $h=4$.

Theorem: The algorithm returns a universe cover with cost at most $h \cdot O P T_{s}$.

Proof. Suppose that our algorithm picks t sets. Every time the algorithm picks a set, at least one new element is covered. For each $i \in[1, t]$, denote by e_{i} an arbitrary element that is newly covered when the i-th set is picked.

Let \mathcal{C}^{*} be an optimal universe cover. Because each e_{i} exists in at least one set of \mathcal{C}^{*}, we have:

$$
\begin{aligned}
t=\sum_{i=1}^{t} 1 & \leq \sum_{i=1}^{t} \# \text { sets in } \mathcal{C}^{*} \text { containing } e_{i} \\
& \leq \sum_{e \in U} \# \text { sets in } \mathcal{C}^{*} \text { containing } e \\
& =\sum_{S \in \mathcal{C}^{*}}|S| \leq\left|\mathcal{C}^{*}\right| \cdot h
\end{aligned}
$$

Corollary: If $h=O(1)$, then our algorithm achieves a constant approximation ratio.

Remark: With a more careful analysis, we can actually prove that our algorithm has an approximation ratio of $1+\ln h$.

- Not required in this course.

Our set cover algorithm can be used to solve many problems with approximation guarantees. Next, we will see two examples.

```
Vertex Cover
```

$G=(V, E)$ is an undirected graph. We want to find a small subset $V^{\prime} \subseteq V$ such that every edge of E is incident to at least one vertex in V^{\prime}. The optimization goal is to minimize $\left|V^{\prime}\right|$.

Convert the problem to set cover:

- For every $v \in V$, define $S_{v}=$ the set of edges incident on v.
- Apply our algorithm on the set-cover instance: $\mathcal{S}=\left\{S_{v} \mid v \in V\right\}$. This gives an $O(\ln |V|)$-approximate solution.

Remark: This algorithm is not as competitive as the 2-approximate vertex-cover algorithm we discussed in the lecture. But the point here is to demonstrate the usefulness of set cover, rather than improving the approximation ratio.

Facility Location

$R=$ a set of $n 2 \mathrm{D}$ red points, each called a facility
$B=$ a set of $n 2 \mathrm{D}$ black points, each called a customer
$\epsilon=$ a positive integer.
A subset $S \subseteq R$ is a feasible facility set if, for every black point $b \in B$, there is at least one point $r \in S$ with $\operatorname{dist}(r, b) \leq \epsilon$.

OPT = the smallest size of all feasible facility sets.
Goal: Return a feasible facility set with size OPT • O $(\log n)$ (assuming the existence of at least one feasible facility set).

Facility Location

Convert the problem to set cover:

- For every $r \in R$, define $S_{r}=$ the set of black points b satisfying $\operatorname{dist}(r, b) \leq \epsilon$.
- Apply our algorithm on the set-cover instance: $\mathcal{S}=\left\{S_{r} \mid r \in R\right\}$.

This gives an $O(\log n)$-approximate solution.

Next, we will turn our attention to the hitting set problem.

Hitting Set

Let U be a finite set called the universe.

We are given a family \mathcal{S} where

- each member of \mathcal{S} is a set $S \subseteq U$;
- $\bigcup_{S \in S} S=U$.

A subset $H \subseteq U$ hits a set $S \in \mathcal{S}$ if $H \cap S \neq \emptyset$.
A subset $H \subseteq U$ is a hitting set if it hits all the sets in S.

The hitting set problem:
Find a hitting set H of the minimize size.

Example: $U=\{1,2,3,4,5\}$ and $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{8}\right\}$ where

$$
\begin{aligned}
& S_{1}=\{1,4,5\} \\
& S_{2}=\{1,2,5\} \\
& S_{3}=\{1,5\} \\
& S_{4}=\{1\} \\
& S_{5}=\{2\} \\
& S_{6}=\{3\} \\
& S_{7}=\{2,3\} \\
& S_{8}=\{4,5\}
\end{aligned}
$$

An optimal solution is $H=\{1,2,3,4\}$.

We can obtain a $(1+\ln |\mathcal{S}|)$-approximate solution by resorting to a set-cover algorithm.

Set cover and hitting set are essentially the same problem.

Facility Location (Revisited)

$R=$ a set of $n 2 \mathrm{D}$ red points, each called a facility
$B=$ a set of $n 2 \mathrm{D}$ black points, each called a customer
$\epsilon=$ a positive integer.
A subset $S \subseteq R$ is a feasible facility set if, for every black point $b \in B$, there is at least one point $r \in S$ with $\operatorname{dist}(r, b) \leq \epsilon$.

OPT = the smallest size of all feasible facility sets.
How to cast the problem as an instance of the hitting set problem?

Facility Location (Revisited)

Convert the problem to hitting set:

- For every $b \in B$, define $S_{b}=$ the set of red points r satisfying $\operatorname{dist}(r, b) \leq \epsilon$.
- Solve the hitting set instance: $\mathcal{S}=\left\{S_{b} \mid b \in B\right\}$.

Why both set cover and hitting set?

Sometimes, one perspective is easier to perceive than the other.

Scheduling

We have t events: $1,2, \ldots, t$. Set S_{i} contains the dates on which event i can be scheduled to take place.

Goal: Find the smallest number of dates to schedule all events.

Earlier, for set cover, we proved that our algorithm taught in the class has an approximation ratio h, where h is the size of the largest set in the input collection.

As set cover is equivalent to hitting set, that result should also imply a new approximation ratio for hitting set. What is the ratio?

