
1/20

Asymptotic Analysis:
The Growth of Functions

By Yufei Tao’s Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

Asymptotic Analysis: The Growth of Functions



2/20

In the lecture, we have defined the worst-case running time of an

algorithm to be a function of n. However, the definition has nothing to

do with “big-O”. Many students hold the inaccurate view that “big-O”

represents worst-case running time. In this tutorial, we aim to clear this

misconception. Furthermore, we will also take the chance to review the

relevant notations of “big-Omega” and “big-Theta”.

Asymptotic Analysis: The Growth of Functions



3/20

Consider an algorithm whose worst-case running time is 10 + 10 log2 n,
where n is the problem size.

In computer science, we rarely calculate the running time to such a
detailed level. We typically ignore all the constants, but only worry about
the dominating term. For example, instead of 10 + 10 log2 n, we will keep
only the log2 n term.

Why?

Asymptotic Analysis: The Growth of Functions



4/20

Why Not Constants?

Suppose that one algorithm has 5n atomic operations, while another
algorithm 10n. Which one is faster in practice?

The answer is: “it depends”.

Not every atomic operation takes equally long in reality. For example, a

comparison a < b is typically faster than multiplication a · b, which in

turn is often faster than accessing a location in memory. Therefore,

which algorithm is faster depends on the concrete operations they use.

Asymptotic Analysis: The Growth of Functions



5/20

Why Not Constants?

Suppose that Algorithm 1 runs in

n · cmult + 4n · cmem

time, where cmult is the time of one multiplication, and cmem the time of
one memory access; Algorithm 2 runs in

9n · cmult + n · cmem

time. Again, which one is better depends on the specific values of cmult

and cmem, which vary from machine to machine.

However, in mathematics, we want to make universal conclusions
that hold on all machines.

It is difficult (perhaps even impossible) to make any universal conclusion

if you must take constants into account.

Asymptotic Analysis: The Growth of Functions



6/20

Why Not Constants?

Continuing from the previous slide, consider again two algorithms with
costs n · cmult + 4n · cmem and 9n · cmult + n · cmem, respectively.

Here is a universal conclusion that we can make:

Their costs differ by at most some constant factor.

To reach such a conclusion, none of the constants 4, 9, cmult , and cmem

matters.

Asymptotic Analysis: The Growth of Functions



7/20

So, What Does Matter?

The growth of the running time with the problem size n.

We care about the efficiency of an algorithm when n is large (for small n,

the efficiency is less of a concern, because even a slow algorithm would

have acceptable performance).

Asymptotic Analysis: The Growth of Functions



8/20

So, What Does Matter?

Suppose that Algorithm 1 demands n atomic operations, while Algorithm
2 requires 10000 · log2 n.

For n = 230 (roughly 109), Algorithm 2 is faster by a factor of
n

10000 log2 n
> 3579. The factor continuously increases with n. When n

tends to ∞, Algorithm 2 is infinitely faster.

Algorithm 2, therefore, is considered better than Algorithm 1 in computer

science.

Asymptotic Analysis: The Growth of Functions



9/20

Art of Computer Science

Primary objective:

Minimize the growth of running time in solving a problem.

Asymptotic Analysis: The Growth of Functions



10/20

Next, we will review of the notations O,Ω, and Θ.

Asymptotic Analysis: The Growth of Functions



11/20

Big-O

Let f (n) and g(n) be two functions of n.

We say that f (n) grows asymptotically no faster than g(n) if
there is a constant c1 > 0 such that

f (n) ≤ c1 · g(n)

holds for all n at least a constant c2.

We can denote this by f (n) = O(g(n)).

Asymptotic Analysis: The Growth of Functions



12/20

Example

Earlier, we say that an algorithm with running time 10000 log2 n is better
than another one with running time n. Big-O captures this because:

10000 log2 n = O(n)

n ̸= O(10000 log2 n)

Asymptotic Analysis: The Growth of Functions



13/20

An interesting fact:

loga n = O(logb n)

for any constants a > 1 and b > 1.

Because of the above, in computer science, we often omit constant
logarithm bases in big-O. For example, instead of O(log2 n), we will
simply write O(log n).

Essentially, this says that “you are welcome to put any constant
base there; and it will be the same asymptotically”.

Asymptotic Analysis: The Growth of Functions



14/20

Henceforth, we will describe the running time of an algorithm only
in the asymptotical (i.e., big-O) form, which is also called the
algorithm’s time complexity.

For example, instead of saying that the running time of binary search is

f (n) = 10 + 10 log2 n, we will say f (n) = O(log n), which captures the

fastest-growing term in the running time. This is also binary search’s

time complexity.

Asymptotic Analysis: The Growth of Functions



15/20

Big-Ω

Let f (n) and g(n) be two functions of n.

If g(n) = O(f (n)), then we define:

f (n) = Ω(g(n))

to indicate that f (n) grows asymptotically no slower than g(n).

The next slide gives an equivalent definition.

Asymptotic Analysis: The Growth of Functions



16/20

Big-Ω

Let f (n) and g(n) be two functions of n.

We say that f (n) grows asymptotically no slower than g(n) if
there is a constant c1 > 0 such that

f (n) ≥ c1 · g(n)

holds for all n at least a constant c2.

We can denote this by f (n) = Ω(g(n)).

Asymptotic Analysis: The Growth of Functions



17/20

Big-Θ

Let f (n) and g(n) be two functions of n.

If f (n) = O(g(n)) and f (n) = Ω(g(n)), then we define:

f (n) = Θ(g(n))

to indicate that f (n) grows asymptotically as fast as g(n).

Asymptotic Analysis: The Growth of Functions



18/20

Exercise 1

Verify all the following:

10000000 = O(1)

100
√
n + 10n = O(n)

1000n1.5 = O(n2)

(log2 n)
3 = O(

√
n)

(log2 n)
9999999999 = O(n0.0000000001)

n0.0000000001 ̸= O((log2 n)
9999999999)

n9999999999 = O(2n)

2n ̸= O(n9999999999)

Asymptotic Analysis: The Growth of Functions



19/20

Exercise 2

Verify all the following:

log2 n = Ω(1)

0.001n = Ω(
√
n)

2n2 = Ω(n1.5)

n0.0000000001 = Ω((log2 n)
9999999999)

2n

1000000
= Ω(n9999999999)

Asymptotic Analysis: The Growth of Functions



20/20

Exercise 3

Verify the following:

10000 + 30 log2 n + 1.5
√
n = Θ(

√
n)

10000 + 30 log2 n + 1.5n0.5000001 ̸= Θ(
√
n)

n2 + 2n + 1 = Θ(n2)

Asymptotic Analysis: The Growth of Functions


