CSCI3160: Special Exercise Set 8

Prepared by Yufei Tao

Problem 1. Consider the optimal BST problem on $S = \{1, 2, 3, 4\}$ and the weight array W = (10, 20, 30, 40).

- Give the values of optcost(a, b) for all a, b satisfying $1 \le a \le b \le 4$. Recall that optcost(a, b) is the smallest average cost of all BSTs on $\{a, a+1, ..., b\}$.
- Give the value of $optcost(1, 4 \mid 3)$. Recall that this is the smallest average cost of a BST on $\{1, 2, 3, 4\}$ on condition that 3 must be the root of the BST.
- Show an optimal BST on S with the smallest average cost.

Problem 2. For the optimal BST problem, we have derived in the class optavg(a, b) as follows:

$$optavg(a,b) = \begin{cases} 0 & \text{if } a > b \\ \sum_{i=a}^{b} W[i] + \min_{r=a}^{b} \{optavg(a,r-1) + optavg(r+1,b)\} \end{cases} \text{ otherwise}$$

Give an algorithm to evaluate optavg(1, n) in $O(n^3)$ time.

Problem 3. Continuing on the previous problem, although we are now able to compute optavg(1, n), we have not constructed any optimal BST yet. Describe an algorithm to do so in $O(n^3)$ time.

Hint: For any such a, b satisfying $1 \le a \le b \le n$, define bestroot(a, b) to be the $r \in [a, b]$ optavg(a, r - 1) + optavg(r + 1, b).

Problem 4. Consider again the optimal BST problem on set $S = \{1, 2, ..., n\}$ and a weight array W, as defined in the class. Prof. Goofy proposes the following greedy algorithm for finding an optimal BST T:

- r =the integer $i \in [1, n]$ with the largest W[i].
- Make r the root of T.
- Apply the above strategy to build a tree T_1 on $\{1, 2, ..., r-1\}$, and a tree T_2 on $\{r+1, r+2, ..., n\}$.
- Make the root of T_1 the left child of r, and the root of T_2 the right child of r.

Prove: the above algorithm does not always return an optimal BST.

Problem 5. Consider again the set $S = \{1, 2, ..., n\}$ and a weight array W as in the optimal BST problem. This time, we want to find instead the *most terrible* BST: the one with the largest average cost. Give an algorithm to do so in $O(n^3)$ time.