CSCI3160: Special Exercise Set 8

Prepared by Yufei Tao

Problem 1. Consider the optimal BST problem on $S=\{1,2,3,4\}$ and the weight array $W=$ (10, 20, 30, 40).

- Give the values of $\operatorname{optcost}(a, b)$ for all a, b satisfying $1 \leq a \leq b \leq 4$. Recall that optcost (a, b) is the smallest average cost of all BSTs on $\{a, a+1, \ldots, b\}$.
- Give the value of $\operatorname{optcost}(1,4 \mid 3)$. Recall that this is the smallest average cost of a BST on $\{1,2,3,4\}$ on condition that 3 must be the root of the BST.
- Show an optimal BST on S with the smallest average cost.

Problem 2. For the optimal BST problem, we have derived in the class $\operatorname{optavg}(a, b)$ as follows:

$$
\operatorname{optavg}(a, b)= \begin{cases}0 & \text { if } a>b \\ \sum_{i=a}^{b} W[i]+\min _{r=a}^{b}\{\operatorname{optavg}(a, r-1)+\operatorname{optavg}(r+1, b)\} & \text { otherwise }\end{cases}
$$

Give an algorithm to evaluate $\operatorname{optavg}(1, n)$ in $O\left(n^{3}\right)$ time.
Problem 3. Continuing on the previous problem, although we are now able to compute $\operatorname{optavg}(1, n)$, we have not constructed any optimal BST yet. Describe an algorithm to do so in $O\left(n^{3}\right)$ time.

Hint: For any such a, b satisfying $1 \leq a \leq b \leq n$, define $\operatorname{bestroot}(a, b)$ to be the $r \in[a, b]$ $\operatorname{optavg}(a, r-1)+\operatorname{optavg}(r+1, b)$.

Problem 4. Consider again the optimal BST problem on set $S=\{1,2, \ldots, n\}$ and a weight array W, as defined in the class. Prof. Goofy proposes the following greedy algorithm for finding an optimal BST T :

- $r=$ the integer $i \in[1, n]$ with the largest $W[i]$.
- Make r the root of T.
- Apply the above strategy to build a tree T_{1} on $\{1,2, \ldots, r-1\}$, and a tree T_{2} on $\{r+1, r+2, \ldots, n\}$.
- Make the root of T_{1} the left child of r, and the root of T_{2} the right child of r.

Prove: the above algorithm does not always return an optimal BST.
Problem 5. Consider again the set $S=\{1,2, \ldots, n\}$ and a weight array W as in the optimal BST problem. This time, we want to find instead the most terrible BST: the one with the largest average cost. Give an algorithm to do so in $O\left(n^{3}\right)$ time.

