CSCI3160: Special Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x be a string of length n, and y a string of length m. Define opt (i, j) to be the length of an LCS of $x[1: i]$ and $y[1: j]$ for $i \in[0, n]$ and $j \in[0, m]$. Compute the values of all possible (i, j) for $x=10010101$ and $y=(010110110)$.

Problem 2. Find an LCS of x and y given in Problem 1.
Problem 3. Given a string s of length n, stored in an array of characters, we call $s[i: j]$ a substring of s, for all pairs of i, j satisfying $1 \leq i \leq j \leq n$. Let x be a string of length n, and y a string of length m. Design an algorithm to find a longest common substring of x and y in $O(n m)$ time.

Problem 4*. Let \boldsymbol{M} be an $n \times n$ matrix where each cell $\boldsymbol{M}[i, j]$ stores a distinct integer, for all $i \in[1, n]$ and $j \in[1, n]$. Define a path of length $\ell \geq 1$ to be a sequence of ℓ cells $\boldsymbol{M}\left[i_{1}, j_{1}\right], \boldsymbol{M}\left[i_{2}, j_{2}\right]$, $\ldots, \boldsymbol{M}\left[i_{\ell}, j_{\ell}\right]$ satisfying both conditions below:

- for each $k \in[2, n], \boldsymbol{M}\left[i_{k-1}, j_{k-1}\right]$ and $\boldsymbol{M}\left[i_{k}, j_{k}\right]$ are neighboring cells (this means the former cell is above, below, to the left of, or to the right of the latter cell);
- for each $k \in[2, n], \boldsymbol{M}\left[i_{k-1}, j_{k-1}\right]<\boldsymbol{M}\left[i_{k}, j_{k}\right]$.

Design an algorithm that finds a path of the maximum length in $O\left(n^{2} \log n\right)$ time.
(Hint 1: Find the length of longest paths starting from each cell)
(Hint 2: To choose a topological order, sort all the cells)
Problem 5**. Improve the running time of your solution to Problem 4 to $O\left(n^{2}\right)$. (Hint: What is the dependency graph among the cells?)

