CSCI3160: Special Exercise Set 6

Prepared by Yufei Tao

Problem 1. Define function $f(x)$ - where $x \geq 0$ is an integer - as follows:

- $f(0)=0$
- $f(1)=1$
- $f(x)=f(x-1)+f(x-2)$.

Give an algorithm to calculate $f(n)$ in $O(n)$ time (you can assume that $f(x)$ fits in a word for all $x \leq n$).

Problem 2. Let A be an array of n integers. Consider the following recursive function which is defined for any i, j satisfying $1 \leq i \leq j \leq n$:

$$
f(i, j)= \begin{cases}0 & \text { if } i=j \\ A[i] \cdot A[j]+\min _{k=i+1}^{j-1} f(i, k)+f(k, j) & \text { if } i \neq j\end{cases}
$$

Design an algorithm to calculate $f(1, n)$ in $O\left(n^{3}\right)$ time.
Problem 3. In Lecture Notes 8, we defined function $f(i, j)$ based on strings $x=$ ABC and $y=$ BDCA. Calculate $f(i, j)$ for all possible i and j.

Problem 4. In the rod-cutting problem, suppose that $n=5$ and the price array P is $(2,6,7,9,10)$. What is the maximum revenue achievable?

Problem 5 (Textbook Problem 15.1-3). Consider a modification of the rod-cutting problem in which, in addition to a price $P[i]$ for each length $i \in[1, n]$, each cut incurs a fixed cost of c. The revenue associated with a solution is now the sum of the prices of the segments minus the total cost of making the cuts. Give a dynamic-programming algorithm to solve this modified problem in $O\left(n^{2}\right)$ time.

