CSCI3160: Special Exercise Set 5

Prepared by Yufei Tao

Problem 1. Consider the alphabet Σ with letters a, b, c, d, e, f, g, h whose frequencies are $3 \%, 5 \%$, $10 \%, 12 \%, 14 \% 16 \%, 18 \%$, and 22%, respectively. Use Huffman's algorithm to find a prefix code on Σ that has the smallest average length.
Problem 2. Consider an alphabet Σ that contains n letters with their frequencies given, where n is a power of 2 . Prove: the prefix code constructed using Huffman's algorithm has an average length of at most $\left\lceil\log _{2} n\right\rceil$.

Problem 3. Describe how to implement Huffman's algorithm to ensure a worst-case time complexity of $O(n \log n)$, where n is the size of the alphabet Σ.

Problem 4. Consider the alphabet $\Sigma=\{1,2, \ldots, n\}$ for some integer $n \geq 1$. Suppose that the frequency of i is strictly higher than the frequency of $i+1$, for any $i \in[1, n-1]$. Prove: in an optimal prefix code, for any $i \in[1, n-1]$, the codeword of i cannot be longer than that of $i+1$.
Problem 5. Consider an alphabet Σ with n letters, all of which have exactly the same frequency. The value of n is a power of 2 . If we use Huffman's algorithm to generate the codewords for all the letters in Σ, how many bits are there in the shortest codeword?

